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Abstract

An investigation into feature saliency for application to synthetic aperture radar (SAR)

automatic target recognition (ATR) is presented. Specifically, research is focused on

improving the SAR binary classification performance aspect of ATR, or the ability to

accurately determine the class of a SAR target. The key to improving ATR classification

performance lies in characterizing the salient target features. Salient features may be

loosely defined as the most consistently impactful parts of a SAR target contributing

to effective SAR ATR classification. To better understand the notion of salience, an

investigation is conducted into the nature of saliency as applied to Air Force Research

Lab’s (AFRL) civilian vehicle (CV) data domes simulated phase history data set. After

separating vehicles into two SAR data classes, sedan and SUV, frequency and polarization

features are extracted from SAR data and formed into either 1D high range resolution

(HRR) or 2D spectrum parted linked image test (SPLIT) feature vectors. A series of

experiments comparing vehicle classes are designed and conducted to focus specifically

on the saliency effects of various SAR collection parameters including azimuth angle,

aperture size, elevation angle, and bandwidth. The popular kernel-based Bayesian

Relevance Vector Machine (RVM) classifier is utilized for sparse identification of relevant

vectors contributing most to the creation of a hyperplane decision boundary. Analysis

of experimental results ultimately leads to recommendations of the salient feature vectors

and SAR collection parameters which provide the most potential impact to improving

vehicle classification. Demonstrating the proposed saliency characterization algorithm with

simulated civilian vehicle data provides a road map for salient feature identification and

analysis of other SAR data classes in future operational scenarios. ATR practitioners may

use saliency results to focus more attention on the identified salient features of a target

class, improving efficiency and effectiveness of SAR ATR.
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SALIENT FEATURE IDENTIFICATION AND ANALYSIS USING KERNEL-BASED

CLASSIFICATION TECHNIQUES FOR SYNTHETIC APERTURE RADAR

AUTOMATIC TARGET RECOGNITION

I. Introduction

1.1 SAR ATR Problem Overview

Advances in optical technology have made it possible to acquire high-quality images

of targets-of-interest from ranges beyond the earth’s atmosphere [1]. The drawback to

these optical advances is that both clear visibility and an adequate light source are required

to collect recognizable image data. The answer to these drawbacks is synthetic aperture

radar (SAR) imaging [2]. Electromagnetic waves transmitted by airborne radar are able to

propagate to and from a target-of-interest regardless of the weather conditions or time of

day, providing information about a target that is otherwise not achievable with an optical

lens. Using the scattering responses, or phase history data, collected from the target, SAR

images may be formed and analyzed for target identification. The quality of the SAR image

depends on the amount of information collected from the target, both in angular extent and

frequency content. SAR images will be more complete if phase history data encompasses

a wide bandwidth and is collected from many aspect angles of the target, both in azimuth

and elevation of the airborne radar in relation to the ground target. The azimuth coverage

of the radar’s flight path corresponds to the synthetic aperture of the radar, and the greater

the aperture, the easier it will be to construct a recognizable image from phase history data.

Limitations often cause phase history data to be collected sparsely in aperture, bandwidth,

or both, however, making it difficult to construct a recognizable image from the incomplete

phase histories.
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Once phase history data for a specific target area is collected, SAR imaging algorithms

such as backprojection or polar reformat are used to generate the SAR image [2, 3].

Analysts are trained to recognize specific targets-of-interest from sparse or incomplete

SAR images for specific tasks such as international intelligence. This method of SAR

image analysis is time consuming and subject to potential human error. To assist analysts

in the understanding of incomplete SAR target information, advances in automatic target

recognition (ATR) research have provided additional information regarding the physical

characteristics of SAR targets through a variety of preprocessing and feature extraction and

classification techniques on phase history data. This research continues the efforts toward

the advancement of SAR ATR through an exploration and analysis of salient target features.

1.2 Introduction to Salient Feature Analysis

Many advances in SAR ATR related fields have involved extracting particular features

from the phase history data to reduce dimensionality of the data in order to classify specific

portions of the target. Some techniques have involved extracting wavefronts [4] or point

scatterers [5] from phase history data, while other methods extract features which represent

3D physically relevant canonical shapes [6, 7]. Three-dimensional parametric scattering

centers are designed specifically to break down a target into its physical features for ease

of identification and analysis.

One particular feature analysis technique, the SPLIT algorithm [8, 9], proposed by

Fuller and discussed in Section 2.3.2, attempts to correctly classify canonical shapes within

a SAR target image to aid in target analysis and identification. Regardless of the type of

features which are classified, however, a common thread among feature analysis techniques

is that in order to correctly classify a target or parts of a target, distinguishing features must

be extracted from phase history data to reduce target ambiguity for identification.

The features to be extracted from phase history data for saliency research include

frequency and polarization information corresponding to physical locations on the target.

2



Each set of extracted features at a specified location are concatenated into a feature vector

(FV). Two types of FVs are considered for salient feature analysis. The first are extracted

1D high range resolution (HRR) profiles corresponding to azimuth angle and range. The

HRR FVs utilized for saliency research are expressed as (α, ke, ko, φ, r), where α is the

frequency parameter, ke is the even-bounce polarization information, ko is the odd-bounce

polarization information, φ is the azimuth angle with respect to the target, and r is the range

with respect to the target scene center. Two-dimensional image FVs are also utilized for

saliency analysis through implementation of the SPLIT algorithm. The 2D SPLIT FVs may

be expressed as (α, ke, ko, x, y), where x and y correspond to the pixel locations within a

2D SAR image obtained through the backprojection imaging algorithm. Further details on

the feature extraction process for saliency analysis as well as background information on

the backprojection and SPLIT algorithms are provided in Chapter 2.

Each extracted FV maps to a specific location on the target, and the extracted

frequency and polarization features provide additional information for distinguishing

between data points. Identification decisions from an ATR perspective may then be made

using classification techniques on the extracted FVs. Feature classification is widely used

in the fields of pattern recognition and machine learning for a range of research including

such topics as medical imaging [10] and handwriting recognition [11]. The type of

feature classification used for SAR saliency analysis is an extension of the popular Support

Vector Machine (SVM) [12] called the Relevance Vector Machine (RVM), originally

developed by Tipping [13]. While the details of the RVM feature classification method

are covered in more detail in Chapter 2, RVM is a supervised learning method that is

kernel-driven to separate classes of data in high-dimensional feature spaces and sparsely

identify those FVs which aid most in the creation of the decision boundary. Unlike other

ATR classification algorithms, using the kernel-based Bayesian RVM classifier eliminates

irrelevant feature data to reveal only the most impactful features among data classes.
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Analysis of the identified relevant vectors will provide additional information about the

most consistently significant features for each target which will allow SAR image analysts

and ATR practitioners to focus more attention on the salient features of a particular target

class.

The term “salient” was specifically chosen to describe our research objectives for

several reasons. Salience is not merely another term for “relevance” describing the outputs

of the RVM feature classification method. Feature saliency carries a deeper meaning

than adjectives such as important or relevant because an identified relevant feature in

one example may be considered irrelevant in a similar example with slightly different

parameter values. A salient feature must demonstrate a pattern of persistence through

many experiments, making it difficult to define within research since not all salient features

are identified in the same way. Others have defined saliency in the context of their own

research based upon the methods chosen for identifying salient features [14]. We will

incorporate several output metrics and analysis methods to best characterize the salient

feature identification process discussed in Chapter 3. A formal definition of salience will

not be explicitly expressed prior to the start of our research. Instead, an investigation will

be conducted into the nature of saliency by analyzing a variety of parameter effects and FVs

on feature classification outputs. Observed patterns and results will ultimately contribute

to recommendations regarding saliency within the context of our research. The identified

salient features for the SAR civilian vehicle targets analyzed here may not translate to

other target classes, but the methodology developed for characterizing saliency may be

applied to future work so that salient features may be highlighted on any class of targets

for improvement of ATR.

Two types of target sets are considered for salient feature analysis research. The first

is target scenes consisting of only the 3D canonical shapes. Phase histories of synthetic

radar scattering data are generated for scenes comprised of canonical scatterers at specified
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parameters which include x, y, and z location parameters, height H, length L, and radius

r size parameters, and roll γ̃, pitch θ̃, and yaw φ̃ orientation parameters. The azimuth,

elevation, and aperture size angles corresponding to the radar flight path are specified in

addition to radar bandwidth. Once phase history has been generated for a canonical shape

scene, frequency and polarization parameters are extracted using the algorithms described

in Section 2.1. Beginning saliency analysis research with the canonical scatterers allows

for the calibration of the feature extraction algorithms to ensure accurate results. Since

there are far fewer scatterers in the primitive scatterer scenes than in complex real-world

targets, the features and locations for each scatterer may be more easily predicted to verify

accurate extraction results. The second target sets used for saliency analysis are much more

complex, and feature extraction and classification results may not be predicted as easily or

accurately.

The second type of SAR targets considered for our research effort are civilian vehicles.

Air Force Research Laboratory (AFRL)’s publicly available civilian vehicle (CV) data

domes consist of fully polarmetric simulated phase history data for ten different models

of civilian vehicles over 0◦ − 360◦ in azimuth, 30◦ − 60◦ in elevation, and a wide 5.35 GHz

bandwidth [15]. All ten vehicles are listed in Table 1.1 along with the class of vehicle to

which each has been assigned. In addition, all vehicles are illustrated in Figure 1.1. Feature

vectors are extracted from the phase history for a single vehicle over a specified azimuth,

elevation, aperture extent, and bandwidth for input into the RVM classifier according to

the saliency analysis experiments described in Chapter 3. Relevant FVs are analyzed and

compared between vehicles and across vehicle classes to determine the most impactful

features.

Saliency analysis results may be used to create more efficient and effective target

models that focus on the identified salient features of a target class and ignore those

features that are irrelevant or redundant across all classes. Additionally, a methodology
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Table 1.1: AFRL CV data domes vehicles with corresponding vehicle class assignment.

Vehicle Make and Model Class

Toyota Camry Sedan

Honda Civic Sedan

Jeep Cherokee (1993) SUV

Jeep Cherokee (1999) SUV

Nissan Maxima Sedan

Mazda MPV SUV

Mitsubishi Sedan

Nissan Sentra Sedan

Toyota Avalon Sedan

Toyota Tacoma SUV

is developed for distinguishing identifiable features between target classes, leading to a

more accurate ATR process. The results of this research effort may directly benefit the Air

Force operationally through optimization of flight paths based on known salient features of

a particular target-of-interest.

1.3 Thesis Goals

While a significant amount of work has been accomplished in the field of SAR

ATR, it is a complex problem that is nowhere near solved. We will focus on a piece of

this problem, specifically the comparison of two classes of SAR phase history data for

improvement of binary classification accuracy and identification of distinguishable class

features. Distinctive class features separate one SAR target from another and ultimately

lead to accurate target identification. Analysis will follow distinctive feature patterns for
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Figure 1.1: All AFRL CV data domes vehicles separated into sedan class, shown with

yellow background, and SUV class, shown with green background [15].

an investigation into the nature of saliency. The contributions and goals of our saliency

research are as follows.

1. Investigate the nature of saliency by developing a methodology for improving the

SAR binary classification performance aspect of ATR.

2. Demonstrate the saliency characterization process by conducting experiments to fully

investigate the AFRL CV data domes SAR phase history data set separated into sedan

and SUV classes.

3. Provide recommendations of the most effective SAR collection parameter values for

improving binary classification performance of civilian vehicles by investigating the

saliency effects of azimuth angle, aperture size, elevation angle, and bandwidth.
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4. Provide recommendations of the most effective type of extracted feature vector for

improving binary classification performance of civilian vehicles by investigating the

saliency effects of 1D HRR feature vectors and 2D SPLIT feature vectors.

1.4 Thesis Organization

This thesis is organized in the following manner. Chapter 2 provides a background

of the topics and algorithms which support our saliency research. Fields include feature

extraction techniques such as the Krogager polarization decomposition [16] and feature

classification algorithms such as the SVM and RVM. Additional related research which

applies to the saliency investigation is also presented in Chapter 2. In Chapter 3, a

methodology is developed for determining the salient features of a particular target class.

In addition, an outline of feature saliency experiments is presented to compare sedan and

SUV civilian vehicle target classes over azimuth, elevation, aperture extent, and bandwidth.

Chapter 4 details the results and analysis of the saliency experiments which reveal the most

impactful features and SAR collection parameters for effective target class identification

between sedan and SUV civilian vehicles. A summary of the overall recommendations for

the parameters and FVs tested with regards to ATR applicability is presented in Chapter 5.

Finally, Chapter 6 provides final conclusions and potential future work in the fields of

salient feature analysis and SAR ATR classification.

8



II. Background

Prior to exploring salient feature analysis, background information must be discussed

for topics used extensively throughout saliency research. Two primary research fields

include feature extraction and feature classification, with an emphasis on the popular

kernel-based vector machine methods of classification. Feature extraction theory will

include frequency and polarization decomposition methods, presented from [16–18], while

foundational material presented for feature classification, SVM, and RVM can be found in

[12, 13, 19–21].

2.1 Feature Extraction

The basic goal of feature extraction is to reduce the ambiguity of a data set by drawing

distinctive information from the data so that the resulting set is more easily separable into

identifiable classes. If successful, feature extraction may provide useful information about

the data not otherwise known from the original data set. Feature extraction techniques are

especially useful for extremely large real-world SAR phase history data collections because

they may be used to provide valuable information about unknown targets. Some of the

features that may be extracted from SAR data include frequency parameters, polarization

parameters, and location parameters which include range and angle to the target for 1D

HRR profiles and x and y pixel coordinates for 2D SAR imagery.

Within the context of HRR feature vector extraction, the frequency parameter α

is extracted from phase history data using an approach known as the Matrix Pencil

Method [17, 18]. This parameterization method provides several benefits which include

a low sensitivity to noise and a decreased computational complexity by avoiding a multi-

dimensional optimization process [6, 22]. For SPLIT feature vectors, the frequency
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parameter is extracted using an iterative curve fitting algorithm which is further described

in Section 2.3.2.

Frequency parameters alone may not provide enough information to resolve and

classify targets for salient feature identification. To further reduce target ambiguity

within the ATR process, polarization features are extracted using the Krogager basis

decomposition [16] for both HRR and SPLIT feature vectors. The Krogager decomposition

method extracts fully-polarmetric target information corresponding to even, odd, and

helical bounce features from the SAR data. The 2×2 complex radar data scattering matrix,

or Sinclair matrix, may be represented as

S =

S hh S vh

S hv S vv

 ,
where S is broken down into its horizontal and vertical transmit and receive orientations

with S hv = S vh for mono-static radar. The fully-polarmetric data may then be translated to

circular polarizations [23]

S rr = jS hv +
1
2

(S hh − S vv), (2.1)

S ll = jS hv −
1
2

(S hh − S vv), (2.2)

S rl =
1
2

(S hh + S vv). (2.3)

It follows that the polarization target features may be extracted for each feature vector using

the Krogager decomposition as [23]

Ke = min(|S ll| , |S rr|), (2.4)

Ko = |S rl| , (2.5)

Kh = abs(|S rr| − |S ll|), (2.6)

where Ke represents the even bounce scattering component, Ko the odd, and Kh the

helical received radar scattering component. The final normalized Krogager decomposition
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coefficients may then be expressed by [23] as

κo =
Ko√

|Ko|
2 + |Ke|

2 + |Kh|
2
, (2.7)

κe =
Ke√

|Ko|
2 + |Ke|

2 + |Kh|
2
, (2.8)

κh =
Kh√

|Ko|
2 + |Ke|

2 + |Kh|
2
. (2.9)

By implementing the Krogager decomposition process outlined above, the original 2 × 2

scattering matrix is transformed into three polarization feature coefficient components

which provide further insight into the physical features of the desired target.

An HRR feature vector is formed for every returned radar pulse by concatenating the

extracted frequency and polarization features with each corresponding azimuth and range

bin expressed as (α, ke, ko, φ, r). Similarly, 2D image feature vectors are created through

the SPLIT algorithm using the extracted frequency and polarization features with the x and

y pixel coordinates within a 2D SAR image, expressed as (α, ke, ko, x, y). Forming these

1D and 2D image feature vectors through feature extraction techniques accomplishes the

first major step in saliency analysis and leads to the feature classification step of the ATR

process.

2.2 Feature Classification

Classification is a common practice used in the statistical machine learning and

pattern recognition communities. Many classification algorithms, including those used

in our saliency research, utilize a binary classification process in which test data is input

into the desired classifier to determine which of the two training classes each input test

data sample belongs. Feature classification is a form of supervised learning, meaning

the algorithm is first trained to establish a decision rule before test data is applied.

There are many traditional classifier algorithms such as Least Squares Solution (LSS)

[24], Kth Nearest Neighbor (KNN) [25], and Principal Component Analysis (PCA) [26].
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While traditional classifiers each provide their own advantages, our saliency research

utilizes kernel-driven classification, specifically the RVM, based on the adaptability and

compressibility advantages described in Section 2.2.1 and Section 2.2.2.

2.2.1 Support Vector Machine (SVM).

SVM is a kernel-based, supervised learning classifier introduced by Vapnik and

coworkers [12]. SVM is a classification algorithm able to create a decision boundary on

large complex data sets efficiently, making it an appealing choice for research involving

computationally complex SAR phase history data. Two distinct sets of SAR data may often

contain a significant amount of overlapping data points, making it challenging to determine

a clear decision boundary. The non-linear SVM classifier operates by transforming the

two data sets to high-dimensional feature spaces through the use of an appropriate choice

of kernel function, increasing separation between the training data in feature space so

that a hyperplane decision boundary may be created. The increased separation among

training data allows test data samples to be classified more accurately in the transformed

feature space. The compressibility of SVM stems from its ability to assign weights to

data samples such that a small fraction of the original data is able to effectively describe

the entire data set, while the remainder of the original data points are deemed irrelevant

and assigned zero weight. The weights are assigned in the feature space via the chosen

kernel with the ultimate goal of maximizing the classification margin, or the distance from

the hyperplane decision boundary to the nearest training data points on either side [19].

The data points which contribute most to maximizing the decision boundary margin are

assigned the highest weights and identified as the support vectors.

It is the support vectors, or the more sparse relevant vectors as discussed in

Section 2.2.2, that are deemed most impactful to the classification process and are therefore

analyzed as potential salient features. Once identified, the salient features may then be used
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to highlight the most consistently significant portions of a SAR target for more effective

modeling, simulation, and ultimately identification.

Consider training data points x = [x1, x2, ..., xL], each belonging to one of two classes

of data, yi = −1 or +1. As Fletcher describes in [27], a general hyperplane may be defined

as [12, 27]

w · x + b = 0, (2.10)

where w is a vector normal to the optimal hyperplane, and b
‖w‖ is the perpendicular

distance from the hyperplane to the origin. Some binary classification problems, such

as those investigated in our SAR saliency research, do not have linearly separable classes.

These types of nonlinear classification problems require the use of the kernel trick [19]

to transform class data to higher dimensional feature spaces, x ⇒ φ(x), for separation.

For any two training data points xi and x j, the kernel function K must satisfy the inner

product condition K(xi, x j) =
〈
φ(xi), φ(x j)

〉
, but the specific kernel function implemented

may transform training data into the feature space x ⇒ φ(x) without ever calculating the

feature space φ directly. Since many data sets demonstrate a normal distribution, the most

commonly used kernel for SVM is the Gaussian Radial Basis Function (RBF) [14, 28]

K(xi, x j) = exp

−
∥∥∥xi − x j

∥∥∥2

σ2

 , (2.11)

where σ is the sensitivity parameter of the kernel. In order to determine the optimal

hyperplane decision boundary required to implement the SVM, w and b must be found

to satisfy the conditions on each of the two classes [12, 27]

φ(xi) · w + b ≥ +1 for yi = +1, (2.12)

φ(xi) · w + b ≤ −1 for yi = −1, (2.13)

where φ(xi) represents the training points in transformed feature space via the RBF kernel

in Equation (2.11). Support vectors are defined as those training points which lie closest to
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the decision hyperplane in the kernel transformed feature space. Consider that the support

vectors lie on two additional hyperplanes D1 and D2 which correspond to distances d1 and

d2, respectively, from the decision hyperplane. The goal of the SVM is to design the optimal

hyperplane such that the distances d1 and d2 to the nearest support vectors is maximized,

which will occur when M = d1 = d2, where M is known as the SVM’s margin. The margin

may be calculated as M = 1
‖w‖ , and maximizing M with the constraints in Equation (2.12)

and Equation (2.13) is equivalent to minimizing ‖w‖ as [12, 27]

min ‖w‖ subject to yi(φ(xi) · w + b) − 1 ≥ 0 ∀i. (2.14)

Optimizing Equation (2.14) requires the introduction of Lagrange multipliers in the form

of feature vector weights γi [12, 27],

LP =
1
2
‖w‖2 −

L∑
i=1

γiyi(φ(xi) · w + b) +

L∑
i=1

γi, (2.15)

where γi ≥ 0 ∀i and LP is the primary Lagrangian form. The objective is to minimize

Equation (2.15) with respect to w and b and maximize it with respect to γ. To accomplish

this task, we first differentiate LP with respect to w and b and set the resultant derivatives

to zero [12, 27]
δLP

δw
= w −

L∑
i=1

γiyiφ(xi) = 0, (2.16)

δLP

δb
=

L∑
i=1

γiyi = 0. (2.17)

Now substituting Equation (2.16) and Equation (2.17) into Equation (2.15), we get the dual

form of LP [12, 27]

LD =

L∑
i=1

γi −
1
2

∑
i, j

γiγ jyiy jφ(xi)φ(xj) subject to γi ≥ 0 ∀i,

L∑
i=1

γiyi = 0. (2.18)

The Lagrangian dual objective function LD is particularly important for non-linear binary

classification, as it requires only the dot product of each training vector xi for transformation
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to the feature space using the kernel trick [19]. Defining an input matrix Hi j = yiy jφ(xi) ·

φ(xj), the Lagrangian dual objective function simplifies [12, 27]

LD =

L∑
i=1

γi −
1
2
γTHγ subject to γi ≥ 0 ∀i,

L∑
i=1

γiyi = 0. (2.19)

As LD is dependent on γ, it must be maximized [12, 27],

max
γ

 L∑
i=1

γi −
1
2
γTHγ

 subject to γi ≥ 0 ∀i and
L∑

i=1

γiyi = 0. (2.20)

Solving for γ in Equation (2.20), a convex quadratic optimization problem, requires the use

of a quadratic programming (QP) solver. Once feature weights vector γ is determined,

it may be used to find w from Equation (2.16). All that remains is determining b to

finalize the creation of our hyperplane decision boundary. We know from the constraint

on Equation (2.14) that any support vectors must satisfy [12, 27]

ys(φ(xs) · w + b) = 1, (2.21)

where xs is a support vector and ys describes the class to which it belongs. Substituting in

Equation (2.16), we see that [12, 27]

ys

∑
m∈S

γmymφ(xm) · φ(xs) + b

 = 1, (2.22)

where S is the set of all support vectors, determined by finding all feature weights γi > 0.

From the class definitions in Equation (2.12) and Equation (2.13), we know that y2
s = 1, so

we multiply both sides of Equation (2.22) by ys and solve for b as [12, 27]

b = ys −
∑
m∈S

γmymφ(xm) · φ(xs). (2.23)

Having found the set of support vectors xs where the weights γ > 0, and the two

components needed to define the optimal separating hyperplane in feature space, w and

b, we have designed a fully functioning SVM classifier. New test data points x′ may now

be classified into their appropriate class y′ as [12, 27]

y′ = sgn(w · φ(x′) + b). (2.24)

15



Following the process described above, the SVM will create an optimal classification

boundary by maximizing the margin between two training data classes based upon the

weights given to the most significant data points, or support vectors. While the SVM

provides a level of compressibility by seeking to identify only those data points that are

most impactful to the decision boundary and ignoring all those with little contribution to the

classification process, extremely large training data sets, such as SAR phase history data,

may still provide a large number of support vectors. In addition, if the two target classes

being trained for classification are very similar, such as two different sedan class civilian

vehicles, creating the optimal decision boundary with the SVM may require a large number

of support vectors. Incorporating a Bayesian approach to the SVM is a method, discussed

further in Section 2.2.2, which aims to achieve a sparse solution while still accurately

representing and separating the classification training data.

2.2.2 Relevance Vector Machine (RVM).

The RVM, introduced by Tipping [13], provides a Bayesian interpretation to the SVM,

resulting in creation of the optimal hyperplane decision boundary in kernel space through

a sparser set of support vectors referred to as relevant vectors. The RVM follows the

same functional form as the SVM process described in Section 2.2.1 but with an imposed

sparseness. The sparseness of the RVM classification model is achieved by introducing a

bias over the feature weights γ in the form of a prior probability [13, 14, 20]

p(γi|ϑi) = N(0|ϑi), (2.25)

where ϑ is the variance of each feature weight γi, and the Gaussian prior has a zero mean

to encourage additional zero-weighted feature vectors forcing sparseness. The sparseness

prior is balanced by a posterior probability which aims to create a model which accurately

fits the training data x. Similar to the SVM, we aim to determine parameters w and

b for defining the hyperplane decision boundary and weights γi for identification of the

set of relevant vectors most impactful to classification decisions. Therefore, the posterior
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probability may be represented as [13, 20]

p(γi,w, b|x) = p(γi|x,w, b)p(w, b|x). (2.26)

Implementing these two probability constraints into the framework of the SVM provides a

method which aims to accurately represent the training sets with only the most significant

feature vectors, or relevant vectors, contributing to decision boundary creation.

The improvement in sparsity of identified relevant vectors which best model the

overall training data sets achieved by the RVM makes it an excellent choice for

feature saliency analysis. The sparse number of relevant vectors highlighted during the

classification process will provide insight into those portions of a target or target class

which are most important to SAR target identification. In addition, the probability of error

metric output by the RVM will provide a level of confidence in the classification result

which also contributes to determining the most salient target features. The feature saliency

experiments designed in Chapter 3 are conducted with an RVM classifier. Various SAR

collection parameters are adjusted throughout the experiments in hopes of determining

those features and collection parameters contributing most to accurate saliency results.

2.3 Related Research

2.3.1 SAR Backprojection.

Once the RVM classifier identifies the feature vectors most relevant to the classifica-

tion decision boundary, the relevant feature vectors may be translated to physical target

locations to aid in the ATR process. One method that may be used to translate extracted

feature vectors into physical target space is SAR imaging. Backprojection is a common

type of SAR imaging technique that maps individual projections onto a spatial grid and

integrates over the aperture angles to produce an image from phase history data [2]. Back-

projection may be used for 1D, 2D, and 3D imaging. In 1D, each transmitted and received

radar pulse forms a HRR profile which provides the magnitudes of reflections from the
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target scene at all ranges for a specific azimuth and elevation angle. As the radar continues

to move over the aperture extent, additional HRR profiles are collected in phase history.

The combinations of these HRR projections represent the overall measured reflectivity of

the target scene, g(s, φ), and can be expressed using the Radon transform [2]

g(s, φ) =
∫ ∞
−∞

f (s cos φ − u sin φ, s sin φ + u cos φ)du,

−∞ < s < ∞, 0 ≤ θ ≤ π,
(2.27)

where s represents range, u represents cross-range, φ represents azimuth angle, and f (s, φ)

represents the actual target scene being imaged. Considering that, for 2D SAR imaging,

g(s, φ) is collected in phase history and the target scene f (x, y) is desired, the inverse radon

transform, or the backprojection operation, is more appropriate for forming a SAR image

of the target scene [2]

f (x, y) =

∫ π

0

∫ ∞

−∞

(|ξ|G(ξ, φ)e j2πξ(x cos φ+y sin φ)dξ)dφ, (2.28)

where ξ is spatial frequency and G(ξ, φ) is the Fourier transform of the projections g(s, φ).

In Equation (2.28), the integral on ξ filters and convolves each projection, then the integral

on φ sums the values over all projections to form the image through backprojection.

Windowing functions in both frequency and azimuth may also be used to form the 2D

image from a desired amount of collected phase history using backprojection [2]

f (x, y) =

∫ π

0

∫ ∞

−∞

(∣∣∣Hξ(ξ − ξc)
∣∣∣G(ξ, φ)e j2πHξ(ξ−ξc)(x cos Hφ(φ−φc)+y sin Hφ(φ−φc))dξ

)
dφ, (2.29)

where Hξ(ξ − ξc) is the band-limited window in frequency with center frequency ξc and

Hφ(φ − φc) is the aperture-limited window in azimuth with center azimuth φc.

Given ample bandwidth in frequency, aperture extent in azimuth, and sufficient

sampling to avoid the effects of aliasing [2, 3], backprojection is an effective SAR

imaging technique capable of forming recognizable images of SAR targets. If a target

scene is comprised of many targets within close proximity or multiple targets with only

minor differences, however, even quality backprojection images may not provide enough
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information to identify or distinguish between the targets-of-interest. These types of

problems have provided motivation for research in various fields such as feature extraction

and feature classification with application to SAR ATR.

2.3.2 SPLIT Algorithm.

The primary objective of the SPLIT algorithm is to classify canonical shape features

corresponding to specific pixels within a 2D SAR image. In order to accurately assess

each pixel for potential feature extraction and classification, several steps must first be

accomplished. First, subimages are generated from raw phase history data using domain

decomposition backprojection. Domain decomposition imaging reduces computational

complexity in image formation by first creating coarse resolution subimages through

sub-banding in frequency (Hξ(ξ − ξc)) and sub-aperturing in azimuth (Hφ(φ − φc)) [8].

Then, interpolating each subimage to a finer resolution and summing across all subimages

provides a computationally efficient approximation of the backprojected image generated

with the full phase history. Another benefit of using domain decomposition imaging is

that peaks may be analyzed for persistence across subimages. Once all subimages are

generated, a peak detection algorithm identifies subimage peaks at specific pixels within

each subimage. If a peak is identified at the same pixel location across all subimages at

a particular sub-aperture, that peak pixel demonstrates a slowly varying amplitude across

frequency. Such pixels are identified as potential canonical scatterers and analyzed for

feature extraction.

In order to correctly classify the canonical shapes within the image, distinguishing

features between the shapes must be extracted from phase history data to reduce target

ambiguity. One feature that may be extracted is the frequency parameter due to the varying

responses received from the canonical shapes as shown in Table 2.1 [8]. The theoretical

amplitude response from which the frequency response may be parameterized for the
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Table 2.1: SPLIT frequency response for 3D canonical shapes [8]

3D Canonical α

trihedral, dihedral90 2

cylinder90, tophat 1

sphere, plate, edge/wire90, dihedral0 0

cylinder0 −1

edge/wire0 −2

canonical scatterers is [8]

S f ( f |A, α) = A( j f )
α
2 , (2.30)

where S f is the amplitude function, f is the frequency of the incident electromagnetic

field, A is the complex-valued amplitude based on the size of the canonical scatterer, and

α is the frequency response for a specific canonical shape that is extracted as the estimated

frequency parameter α′. SPLIT extracts the frequency parameter using an iterative curve

fitting algorithm. A normalized frequency vector f(α′) is first defined which represents the

normalized values to which the frequency parameter α′ is estimated to best fit [8],

f (α′) =
[( fc1)α

′+2, ( fc2)α
′+2, · · · , ( fcI)α

′+2]T

( fc)α
′+2 , (2.31)

where fc1, fc2, ..., fcI is the center frequency for each subband and fc is the center frequency

over the entire bandwidth. An initial estimate of α′ may be extracted using the relationship

between two subimage pixel intensities kI at subimage pixel coordinates (m, n) and their

corresponding subband center frequencies fcI [8]

|k1(m, n)|2

|kI(m, n)|2
≈

(
fc1

fcI

)α′+2

. (2.32)
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Solving for α′, the first approximation of the frequency parameter may be extracted as [8]

α′ =
log

(
|k1(m,n)|2

|kI (m,n)|2

)
log

(
fc1
fcI

) − 2. (2.33)

The frequency extraction algorithm then continues to iteratively update α′ using a gradient

descent technique until the adjustment value δk falls below 0.01, at which point the value

of α′ for the kth iteration is set as the extracted frequency parameter for that particular peak

pixel. Table 2.1 describes the expected SPLIT frequency response for the canonical shapes

between [−2, 2], so any extracted α′ values well outside of that range are not considered

to be attributed canonical shape pixels. SPLIT sets a limit of [−6, 6] for the initial α′

estimate and [−4, 4] for the final extracted value of α′. Although the acceptable final

extraction range of [−4, 4] is outside of the ideal canonical shape frequency response range

of [−2, 2], extracted frequency parameters slightly greater than +2 or slightly less than

−2 are still considered since such pixels also depend on extracted polarization parameters

for accurate canonical shape classification. Using this method, the frequency parameter is

only extracted from those pixels with stable subband image peaks that also demonstrate an

extracted frequency value near the prescribed ranges of the canonical shape models.

To eliminate the remaining ambiguity of the frequency responses shown in Table 2.1,

the SPLIT algorithm also extracts the polarization feature coefficients. Polarization features

are extracted using the Krogager decomposition method described in Section 2.1 and

utilized within saliency research [16].

The extracted frequency and polarization features are concatenated with their

corresponding x and y pixel coordinates to form feature vectors. Once feature vectors

have been extracted for all image peak pixels, SPLIT uses a Least Squares classifier [24] to

ascribe pixels in a joint frequency-polarization feature space. The feature space is shown

in Figure 2.1, broken down into canonical shape regions based on the ideal feature vector

for each scatterer. Classification decisions are then made for each non-zero feature vector

by calculating the Euclidean norm between an extracted feature vector and each of the
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Figure 2.1: Least Squares classification decision boundaries for SPLIT in frequency

polarization feature space [8].

ideal scatterer feature vectors. Each peak pixel is classified as the canonical scatterer with

the minimum Euclidean distance calculation and mapped onto the 2D backprojection SAR

image.

The advantages SPLIT can provide as a feature extraction technique may be

demonstrated through a comparison of simulations. SAR images are produced from

identical phase histories of civilian vehicles in AFRL’s CV data domes using both

traditional backprojection imaging and the integrated SPLIT algorithm. A 2D SAR

amplitude-only image of a Nissan Maxima using backprojection is shown in Figure 2.2.

All 360◦ of azimuth coverage are imaged with 10◦ subapertures. In addition, the full 5.35

GHz bandwidth was included to provide the best possible range resolution, and sampling
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Figure 2.2: Traditional backprojection image of the Nissan Maxima, 0◦ − 360◦ azimuth,

VV polarization, 40◦ elevation, 5.35 GHz bandwidth.

was fine enough to avoid the effects of aliasing within the scene extent. The resultant image

provides an amplitude at each pixel on the 2D grid corresponding to the amount of energy

received by the radar at each point. Some useful target information can be drawn from the

backprojected image. The general shape of the car can be identified by the outside ring in

Figure 2.2 since the top edge of the car will return to the radar closest in range. The bright

spots inside the outer ring identify the sides and back end of the Maxima, with the three

highest-energy returns corresponding to the flat specular vehicle surfaces which create a

double-bounce dihedral with the ground plane at more distant ranges.

While a wide-aperture, large bandwidth, finely sampled backprojected SAR image

like Figure 2.2 can provide some useful target identification information, 2D pixel

amplitudes alone may not provide enough information to distinguish between highly-

similar target classes such as civilian vehicles. By accomplishing feature extraction

and classification techniques, a second SAR image of the Nissan Maxima is produced
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using the SPLIT algorithm, shown in Figure 2.3. Similar to Figure 2.2, the outside

ring in the image identifies the roof line of the vehicle, and the brightest returns toward

the center of the image correspond to the sides and back end of the Maxima. SPLIT

provides additional distinguishing target information in Figure 2.3 based on the extracted

frequency and polarization features. Extracting polarization coefficients using the Krogager

decomposition provides even, odd, and helical bounce information about the target. In

Figure 2.3, the red color on the outside ring confirms that the roof line of the vehicle

reflected directly back to the radar with a single bounce, while the green color on the inside

demonstrates that the transmitted radar waves bounced twice before returning to the radar.

Combining the polarization features with the extracted frequency parameter and applying

the classification algorithm to each of the peak pixels, distributed canonical scatterers are

identified at the peak pixel locations as well. The curved roof line of the Maxima accurately

identifies many horizontal cylinder scattering characteristics, while the front, sides and back

of the vehicle demonstrate predominantly dihedral characteristics. As shown in the legend

in Figure 2.3, SPLIT classifies nine different canonical shapes, with vertically oriented

scatterers marked with a 90 subscript, and horizontally oriented scatters with a 0 subscript.

The feature extraction techniques and classification of scattering behavior into physical

target features accomplished by SPLIT provides excellent insight into the field of SAR

binary target classification explored in our saliency research.

A second example of the SPLIT algorithm is accomplished to demonstrate feature

extraction and classification results for a civilian vehicle with much different physical

characteristics. A Toyota Tacoma pick-up truck is chosen, and the results are presented in

Figure 2.4 and Figure 2.5. A clear difference in received energy compared to the Maxima

can be seen in Figure 2.4 with large amplitude responses from the back half of the vehicle

corresponding to the open cargo bed of the truck. In Figure 2.5, odd polarization response

may be observed in the bed of the truck due to the trihedral triple-bounce presented by
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Figure 2.3: SPLIT image output result for Nissan Maxima, 0◦ − 360◦ azimuth, VV

Polarization, 40◦ elevation, 5.35 GHz bandwidth.

corner reflectors. Also of note in Figure 2.5 is the smaller roof line ring towards the

center of the vehicle classified predominantly with horizontal cylinders. This small ring

is distinctive of the pick-up truck due to the smaller roof line which, unlike other civilian

vehicle classes, drops off into the cargo bed.

The results of the SPLIT algorithm may be used to directly aid in SAR ATR

classification across similar target classes. Figure 2.6 and Figure 2.7 present one possible

method for ATR classification analysis using SPLIT. Similar to results in [8], histograms

are built from the Maxima and Tacoma results in Figure 2.3 and Figure 2.5. By comparing

the total number of classifications for each canonical scatterer, conclusions may be drawn

about a particular vehicle or vehicle class. For example, while many of the feature totals in
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Figure 2.4: Traditional backprojection image of the Toyota Tacoma, 0◦−360◦ azimuth, VV

polarization, 40◦ elevation, 5.35 GHz bandwidth.

Figure 2.6 and Figure 2.7 are similar, Figure 2.6 demonstrates a higher number of horizontal

edges and dihedrals (features 6 and 8) than Figure 2.7. Through analysis of many vehicles

over various SAR collection parameters, trends in classified scatterer types for certain

vehicles or over specific parameter values may be discovered to aid in ATR analysis. The

saliency experiments in Chapter 3 and Chapter 4 adopt a variation of this analysis technique

to highlight the most significant canonical scatterers contributing to sedan and SUV vehicle

classification results.

The results of the SPLIT algorithm have proven to provide progress in the fields of

SAR feature extraction and classification. One of the feature vector types implemented in

our research uses the foundation laid by SPLIT to explore SAR binary vehicle classification

with extracted SPLIT feature vectors. Both HRR and SPLIT feature vectors are extracted

for the salient feature investigation. Vehicle class comparisons use the kernel-driven RVM
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Figure 2.5: SPLIT image output result for Toyota Tacoma, 0◦ − 360◦ azimuth, VV

Polarization, 40◦ elevation, 5.35 GHz bandwidth.

classifier to reduce the complexity of phase history data by disregarding irrelevant or

redundant feature vectors across data sets and highlighting only the most relevant feature

vectors used for classification decisions. SAR binary vehicle classification is achieved

through supervised machine learning so that the user may be alerted to the most relevant

portions between two target classes. Determining the salient features across target classes

and representing them in such a way to allow modeling, simulation, and ATR applications

to focus on specific SAR collection parameters or target class features is the primary

objective of the experiments and analysis which follow in Chapter 3 and Chapter 4.
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Figure 2.6: SPLIT canonical shape histogram for Nissan Maxima, 0◦ − 360◦ azimuth, VV

polarization, 40◦ elevation, 5.35 GHz bandwidth.

Figure 2.7: SPLIT canonical shape histogram for Toyota Tacoma, 0◦ − 360◦ azimuth, VV

polarization, 40◦ elevation, 5.35 GHz bandwidth.
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III. Methodology

The background material presented in Chapter 2 is now incorporated into the salient

feature identification algorithm presented below. The algorithm aims to compare extracted

target features to locate the feature vectors contributing most to decision boundary creation

while making accurate classification decisions on input test data. Once salient feature

vectors may be identified by implementing the algorithm presented in Section 3.1, a variety

of experiments are presented in Section 3.2 to develop a methodology for locating the

salient features and SAR collection parameters of a particular target or target class. A

full analysis of salient feature experimental results is accomplished in Chapter 4. The

feature vectors which demonstrate the best combination of kernel space separation and

classification accuracy provide the greatest potential for effective SAR ATR, allowing

ATR practitioners to focus primarily on the identified salient features and SAR collection

parameters for improved performance of target classification results.

The salient feature identification algorithm is demonstrated using synthetically

generated phase history data from both canonical shape scenes and AFRL’s CV data

domes. The publicly available CV data domes consist of fully polarmetric simulated

phase history data for ten different models of civilian vehicles over 0◦ − 360◦ in azimuth,

30◦−60◦ in elevation, and a wide 5.35 GHz bandwidth [15]. The feature extraction process

is demonstrated with canonical shape phase history data for simplicity, while the RVM

classification process is illustrated with the more complex CV data domes.

The experiments detailed in Section 3.2 include two distinct classes of civilian vehicles

for binary classification, the sedan class and the SUV class. The vehicles included for

testing are presented in Table 1.1 along with the class of vehicle to which each belongs.

In addition, Figure 1.1 illustrates the physical characteristics of the ten vehicles. All six

of the sedan class vehicles share the same general physical characteristics which provides
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advantages to classification accuracy due to the high level of similarity between training and

testing target features. One of the SUV class vehicles, however, does not appear to belong

with the other three vehicles in its class. It is by design that the Toyota Tacoma pick-up

truck is used within the SUV class throughout our research to determine the negative effects

on ATR classification results when training and testing target data sets contain significant

differences in physical features.

It is important to take a moment to acknowledge those providing Matlab codes which

are incorporated into the salient feature identification algorithm which follows. The HRR

feature extraction code is provided by Dr. Sean Gilmore of Analytic Designs, Inc, and

the SPLIT algorithm [8] code discussed in Section 2.3.2 is provided by Dr. Mike Saville

of Wright State University. Lastly, the RVM classification code is provided by Signal

Innovations Group, a company which has also conducted valuable research in the fields of

salient feature analysis and SAR ATR [14]. These individuals play an integral role in the

success of our research.

3.1 Salient Feature Identification Algorithm

The salient feature identification algorithm involves several steps to highlight the most

meaningful portions of an otherwise complex, ambiguous radar data set. First, SAR phase

history data must be collected or synthetically generated over a target scene by specifying

the radar flight path, radar parameters, and target scene reference point. Next, the phase

history data is reformatted in preparation of the feature extraction process. Using the

raw phase history data file, a structure is created which separates the data into three

polarization channels: HH, VV , and HV = VH. The corresponding azimuth angles,

elevation angles, and frequency within each polarization channel are also stored within

the data structure. The feature extraction process then extracts the frequency response and

polarization coefficients according to the methods detailed in Section 2.1 and Section 2.3.2.

Extracted features are concatenated into feature vectors for each target being analyzed.
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Finally, training and test feature vectors are input into the RVM for classification decisions

and identification of relevant vectors as described in Section 2.2.

The feature extraction step uses the methods detailed in Section 2.1 and Section 2.3.2

to extract the frequency response and polarization coefficient parameters from the complex

phase history. To better illustrate the feature extraction process, an example is provided

using simulated phase history data generated from a target scene containing three of the

primitive canonical shapes from [7]. As proposed by Jackson [7], the majority of real-

world targets may be broken down into these primitives, so beginning with a target scene

consisting of only the 3D canonicals creates a reasonable progression in working up to

complex targets such as civilian vehicles.

The target scene chosen for the feature extraction demonstration is shown in

Figure 3.1. The three objects are the top-hat, sphere, and trihedral, or corner reflector,

and all three objects are given different size parameters (height H, length L, and radius

r) and location parameters (X, Y , Z), all in meters, while orientation parameters (roll γ̃,

pitch θ̃, and yaw φ̃), in units of degrees, are held constant. The parameters for all canonical

shapes in the target scene are specified in Table 3.1.

Table 3.1: Canonical shape target scene parameters

X(m) Y(m) Z(m) L(m) H(m) r(m) γ̃◦ θ̃◦ φ̃◦

Trihedral −1 −1 0 0 0.12 0 0 0 0

Tophat 1 1 0 0 0.25 0.25 0 0 0

Sphere 0 0 0 0 0 0.25 0 0 0
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Figure 3.1: Canonical shape target scene image

The simulated radar flight path includes a full 360◦ of azimuth coverage at a constant

elevation angle of 40◦ and a 2 GHz bandwidth. Generating the phase history data for this

scenario produces the normalized return amplitudes illustrated as HRRs in Figure 3.2.

The radar is focused on the origin, so the strong sinusoidal response in Figure 3.2

corresponds to the top-hat which fluctuates in range to the radar depending on the location

of the radar with respect to the origin. The lower amplitude response corresponds to the

sphere, which remains at a constant range because it is located at the origin. While both

the top-hat and sphere provide returns in phase history at all 360◦ of azimuth, the trihedral

only provides returns to the receiver over a limited azimuth range when radar pulses are

able to enter the corner reflector and are returned to the radar via a triple-bounce. Similar

to the top-hat, the response from the trihedral also varies in range because it is not located

at the radar’s origin reference point.
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Figure 3.2: HRR profiles for canonical shape target scene, 0◦−360◦ azimuth, 40◦ elevation,

HH polarization channel, 2 GHz bandwidth. The top-hat is represented by the strong

sinusoidal response, the trihedral is represented by the strong azimuth limited response,

and the sphere is represented by the weak constant range response.

The frequency response parameter α is extracted over the target scene and shown in

Figure 3.3. As described in other feature extraction applications including [7] and [8], the

3D canonical shapes exhibit consistent frequency responses, which in this example include

1 for the trihedral, 0.5 for the top-hat, and 0 for the sphere. As shown in Table 2.1, the

SPLIT algorithm uses comparable frequency responses multiplied by a factor of 2. The

trihedral and top-hat shapes in the target scene may be clearly verified in Figure 3.3 for

accurate frequency parameter extraction, while the sphere is somewhat overshadowed by

the stronger returns from the other target scene shapes in keeping consistent with Figure 3.2.

Frequency response parameters alone may not provide enough information to resolve

and classify targets for salient feature identification. To further reduce target ambiguity

within the ATR process, polarization features are extracted using the Krogager basis
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Figure 3.3: Extracted frequency response parameter α for canonical shape target scene,

0◦ − 360◦ azimuth, 40◦ elevation, VV polarization channel, 2 GHz BW.

decomposition [16]. The Krogager decomposition method extracts fully-polarmetric target

information corresponding to even, odd, and helical bounce features from the SAR data.

The extracted polarization response for the canonical shape scene example is shown in

Figure 3.4. Observe in Figure 3.4 that the polarization features are accurately extracted as

odd bounce for the sphere and trihedral and even bounce for the top-hat.

Extracting the frequency and polarization parameters as demonstrated in the canonical

shape scene example provides a means to reduce ambiguity of the cumbersome SAR phase

history data set. Using the extracted features to form feature vectors for RVM classification

will serve to eliminate redundant and irrelevant phase history data, greatly improving

computational efficiency while still ensuring the most accurate classification results. The

first type of feature vectors are formed by concatenating the extracted frequency parameter

α with the corresponding Krogager polarization coefficients κe and κo for each received

radar pulse at a particular azimuth φ and range r. Together, these 1D HRR feature vectors,
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Figure 3.4: Extracted Krogager decomposition polarization response for canonical shape

target scene, 0◦ − 360◦ azimuth, 40◦ elevation, VV polarization channel, 2 GHz BW.

expressed as (α, κe, κo, φ, r), comprise all received SAR feature data for a particular target

scene. The second type of feature vectors are formed through implementation of the SPLIT

algorithm [8]. SPLIT aims to increase confidence in pixel classification by instituting a

more selective process of extracting features for only those SAR image pixels meeting all

threshold conditions. These 2D SPLIT feature vectors may be expressed as (α, κe, κo, x,

y). Creating the two types of feature vectors through feature extraction accomplishes the

first major step in saliency characterization and leads to the classification step of the salient

feature identification algorithm.

As discussed in Section 2.2.2, the kernel-based RVM provides a balanced approach to

supervised learning by fitting the decision boundary to the training data to produce accurate

classification decisions on test data through a sparse set of relevant vectors representative

of the training data. Supervised machine learning begins by inputing the training data, in

our case the extracted feature vectors, into the classifier. Appropriate choice of training
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data for a particular test may have significant effects on classification performance, an

issue further explored in Section 3.2. The RVM uses a Bayesian probability framework

to compare the training data between the two classes using the specified kernel function.

The kernel function transforms the training data to a higher dimensional kernel space to

increase separability and fit a hyperplane decision boundary to the data by weighting each

of the training feature vectors by their individual relevance to the classification process.

The training feature vectors which do not contribute to the hyperplane boundary creation

receive zero feature weight and are considered irrelevant. The remaining non-zero weighted

feature vectors are the relevant vectors with the greatest impact on the supervised learning

process.

Once the RVM has identified the sparse number of relevant vectors and is trained to

achieve optimal classification results based on the input training data, test data is ready for

feature classification. For the simulations conducted in our saliency research, in addition

to highlighting the relevant vectors and their corresponding feature weights, the RVM

identifies the probability of error in misclassifying test feature vectors. When incorporated

into the test structure described in Section 3.2, all RVM outputs contribute to the saliency

analysis for more effective ATR classification.

An example of the RVM classification process is provided to illustrate a comparison

of sedan and SUV class vehicles. Specifically, the sedan class is trained with extracted

feature vectors from the Civic, Maxima, Mitsubishi, Sentra, and Avalon and tested with

the Camry. The SUV class uses the 93 Jeep, 99 Jeep, and Tacoma for training and the

Mazda MPV for testing. Features are extracted for all vehicles at an azimuth of 90◦, an

elevation of 40◦, an aperture size of ±2.5◦, and the full available bandwidth of 5.35 GHz.

The RBF kernel is implemented as it is the most effective and commonly used kernel for

ATR applications. Appropriate kernel choice is further discussed in Section 3.2. Table 3.2

specifies all input and output parameters for the RVM classification example, to include the
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total number of relevant vectors identified and the max feature weight (MFW) and average

feature weight (AFW) for both the sedan and SUV classes. Figure 3.5 illustrates the output

feature vector weights for each class. In addition, Figure 3.6 and Figure 3.7 show all

training and test feature vectors plotted in a 3D frequency-polarization feature space with

the relevant vectors highlighted for both the sedan and SUV test cases, respectively. The

identified relevant vectors represent the most impactful features of each target class for this

particular test scenario and thus require the most attention for SAR ATR applications.

Table 3.2: AFRL CV data domes RVM classification example test results with extracted

HRR feature vectors.

Sedan Train SUV Train Sedan Test SUV Test Kernel/BW Ap. Size/Az/El

Civ/Max/Mits/Sen/Av J93/J99/Tac Camry Mazda MPV RBF/5.35GHz ±2.5◦/90◦/40◦

# Train/Test
# RVs

Sedan/SUV

% RV

Sedan/SUV

MFW

Sedan/SUV

AFW

Sedan/SUV

Pe

Sedan/SUV

6149/1906 69/66 1.12/1.07 228.24/207.61 76.52/74.33 2.38/12.78

Several observations may be made in reference to the RVM classification example.

The RVM assigned weights rank the relevance of each input feature vector for this

particular test example, but the weight values do not translate for comparison to any future

test cases. A feature vector with a weight of 200 in one test does not necessarily have equal

classification relevance to a 200-weighted feature vector from a different test. For example,

a very obscure physical target feature difference between two highly similar vehicles may

be assigned a very large weight because it is the only identifiable feature between the

two targets, while an easily distinguishable feature between two very dissimilar vehicles

may be assigned a very low weight because it did not contribute to the decision boundary

creation as much as other features. Therefore, feature vector weights including MFW and
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Figure 3.5: Example of RVM classifier HRR feature vector weights.

AFW determined by the RVM are not compared between test cases for contribution to the

saliency investigation process. Additionally, while a single feature vector may carry a very

high weight within one example, identifying that feature vector as relevant to classification,

that same feature vector may carry a zero weight in many other examples. In such a

case, the feature vector that is highly relevant to one specific classification test may not

be considered salient across its target class.

3.2 Salient Feature Experiments

Feature saliency experiments are organized to highlight the most impactful features

contributing to SAR ATR classification when comparing both physically similar and

dissimilar target classes. A variety of feature classifications are conducted on extracted

feature vectors from the sedan and SUV class vehicles listed in Table 1.1 by observing

various parameter effects on feature saliency. Analysis of results reveal the feature vectors

and SAR collection parameters that require the most attention from modelers and mission

planners in real-world operational scenarios.
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Figure 3.6: Frequency-polarization feature space illustration for an RVM example sedan

class test vehicle with identified relevant HRR feature vectors highlighted as large black

dots. Probability of RVM classification error for this sedan class test is 2.38%.

The inputs required for the experiments include both training and test SAR phase

history data for each of the two classes being compared, the sedan class and the SUV class.

In addition, the azimuth angle, aperture size, elevation angle, and bandwidth parameter

settings of the extracted feature data sets must be recorded for analysis. The kernel chosen

for the RVM classifier is another input that affects saliency results and must therefore be

controlled.

Saliency results are determined within the experiments using a combination of several

output metrics. The total amount of both extracted training and testing feature vectors

classified are recorded along with a metric describing the percentage of training feature

vectors identified as relevant. The total number of relevant vectors from each class are

output, including the MFWs and AFWs for each set of relevant feature vectors. As

previously discussed, the probability of error also plays an important role in determining
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Figure 3.7: Frequency-polarization feature space illustration for an RVM example SUV

class test vehicle with identified relevant HRR feature vectors highlighted as large black

dots. Probability of RVM classification error for this SUV class test is 12.78%.

saliency for ATR because it highlights the accuracy of the RVM classifier for input test

data.

The experiments discussed in detail below include comparisons in azimuth angle,

aperture size, elevation angle, and bandwidth. The results are analyzed in Chapter 4 and

presented as a guide to determining feature saliency for improved SAR binary classification

performance. While our research investigates saliency using civilian vehicle SAR target

data, the methodology developed for determining salient features may be applied to

any class of SAR target data. For example, identifying the most impactful features for

identification of various foreign aircraft or tanks may be of interest for future operational

war time scenarios.

The radar’s point of reference in all CV data domes experiments is the center of the

vehicle in the ground plane and all angles, to include azimuth, elevation, and aperture
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extent, are derived from that reference point. To illustrate the angular parameters being

investigated for saliency, the left image in Figure 3.8 defines the azimuth angles and

aperture size using a top-down view of a facet model of the Toyota Camry facing toward

the right side of the page. The side view of the Camry seen in the right image of Figure 3.8

illustrates the elevation angle used within the experiments.

Figure 3.8: Parameter definitions for azimuth angle and aperture size (left image) and

elevation angle (right image).

As previously mentioned, the choice of training data for the RVM classification

process is important in achieving consistently accurate relevant feature vector results.

The comparison between the two training classes establishes the classification decision

boundary and lays the foundation for test data classifications. Therefore, there are several

implications regarding test and training data relationships that must be considered for

effective experimental design.

Consider first the relationship between the two sets of input training data. Since the

two training data sets are compared for creation of the classification decision boundary, it is

imperative that each set of training data represent its particular class as closely as possible

in a general sense without over-fitting the training data to a specific portion of the class.

For example, while the Toyota Camry is a sedan-class vehicle, training the sedan class with
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only the Camry would create a decision boundary based on the physical characteristics

of the Camry alone which may not adequately represent other sedan class vehicles. A

balance must be achieved by training the sedan class to represent the “average” sedan. The

best “average” sedan would include all available sedan class vehicles except for the sedan

being tested. Likewise, the “average” SUV should include all available SUV class vehicles

besides the SUV test vehicle. The test vehicle for each class must not be included in the

training data set as it would over-fit the training data to the vehicles being tested and bias

the classification test results.

The relationship between the training and test data sets is also important to effectively

characterizing salience. Even if the RVM is well-trained to make accurate decisions

between sedan and SUV class vehicles, test data sets must belong within the sedan and

SUV classes as well or classification results may suffer. For example, if the RVM creates

a hyperplane decision boundary in kernel-space with a large classification margin to make

highly-accurate decisions between sedans and SUVs, classification results will still be poor

if a tank is input for testing as it does not represent either of the classes the RVM was

well-trained to model.

Taking into account the implications between training and testing data relationships,

experiments using the 10 available CV data domes vehicles are shown in Table 3.3. The

24 experiments include all combinations of individual vehicle tests between the sedan and

SUV classes with training data encompassing all remaining vehicles within each class. The

24 experiment set forms the foundation from which SAR collection parameters are adjusted

for salient feature testing. The four SAR collection parameters investigated for salience are

azimuth angle, elevation angle, aperture size, and bandwidth. The specific parameter values

extracted for each set of experiments are shown in Table 3.4 for HRR feature vectors and

Table 3.5 for SPLIT feature vectors.
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Table 3.3: Training and testing vehicles defined for each of the 24 experiments.

Test # Sedan Class Train Sedan Class Test SUV Class Train SUV Class Test

Test 1 Civ/Max/Mits/Sen/Av Camry J99/Tac/MPV Jeep93

Test 2 Civ/Max/Mits/Sen/Av Camry Tac/MPV/J93 Jeep99

Test 3 Civ/Max/Mits/Sen/Av Camry MPV/J93/J99 Tacoma

Test 4 Civ/Max/Mits/Sen/Av Camry J93/J99/Tac MazdaMPV

Test 5 Max/Mits/Sen/Av/Cam Civic J99/Tac/MPV Jeep93

Test 6 Max/Mits/Sen/Av/Cam Civic Tac/MPV/J93 Jeep99

Test 7 Max/Mits/Sen/Av/Cam Civic MPV/J93/J99 Tacoma

Test 8 Max/Mits/Sen/Av/Cam Civic J93/J99/Tac MazdaMPV

Test 9 Mits/Sen/Av/Cam/Civ Maxima J99/Tac/MPV Jeep93

Test 10 Mits/Sen/Av/Cam/Civ Maxima Tac/MPV/J93 Jeep99

Test 11 Mits/Sen/Av/Cam/Civ Maxima MPV/J93/J99 Tacoma

Test 12 Mits/Sen/Av/Cam/Civ Maxima J93/J99/Tac MazdaMPV

Test 13 Sen/Av/Cam/Civ/Max Mitsubishi J99/Tac/MPV Jeep93

Test 14 Sen/Av/Cam/Civ/Max Mitsubishi Tac/MPV/J93 Jeep99

Test 15 Sen/Av/Cam/Civ/Max Mitsubishi MPV/J93/J99 Tacoma

Test 16 Sen/Av/Cam/Civ/Max Mitsubishi J93/J99/Tac MazdaMPV

Test 17 Av/Cam/Civ/Max/Mits Sentra J99/Tac/MPV Jeep93

Test 18 Av/Cam/Civ/Max/Mits Sentra Tac/MPV/J93 Jeep99

Test 19 Av/Cam/Civ/Max/Mits Sentra MPV/J93/J99 Tacoma

Test 20 Av/Cam/Civ/Max/Mits Sentra J93/J99/Tac MazdaMPV

Test 21 Cam/Civ/Max/Mits/Sen Avalon J99/Tac/MPV Jeep93

Test 22 Cam/Civ/Max/Mits/Sen Avalon Tac/MPV/J93 Jeep99

Test 23 Cam/Civ/Max/Mits/Sen Avalon MPV/J93/J99 Tacoma

Test 24 Cam/Civ/Max/Mits/Sen Avalon J93/J99/Tac MazdaMPV

All other parameters are held constant throughout the experiments, including the RBF

kernel. One of the benefits of RVM classification is the ability to tailor classification testing

based on the choice of kernel. The best kernel is one that accurately models both the
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training and test data distributions being classified. A variety of existing kernels may be

used or a kernel may be designed to fit the specific classifications being accomplished.

Within our research, several kernels were implemented in initial testing, including the poly

kernel, cross correlation, inner product, and RBF. As expected, the most effective kernel

for classification testing was the RBF. The RBF kernel is best used for Gaussian-based

data classifications, and the majority of data sets used for supervised learning fall into this

category. In addition, the RBF kernel is the most widely used kernel for ATR applications

involving kernel-based classifications. Considering the favorable initial test results and

overwhelming acceptance within the ATR community, the RBF kernel is used exclusively

throughout our salient feature research.

Table 3.4: SAR collection parameters for HRR feature vector experiments

Test Set Azimuth(s) Elevation(s) Aperture Size(s) BW(s) (GHz) Kernel

Az Tests
0◦, 23◦, 45◦, 67◦, 90◦, 112◦,

135◦, 157◦, 180◦, 270◦
40◦ ±2.5◦ 5.35 RBF

El Tests 90◦,180◦ 30◦,40◦,50◦ ±2.5◦ 5.35 RBF

Ap Size Tests 90◦,180◦ 40◦ ±1.5◦,±2.5◦,±5◦ 5.35 RBF

BW Tests 90◦,180◦ 40◦ ±2.5◦ 0.64,3.0,5.35 RBF

Table 3.5: SAR collection parameters for SPLIT feature vector experiments

Test Set Azimuth(s) Elevation(s) Aperture Size(s) BW(s) (GHz) Kernel

Az Tests
0◦, 45◦, 90◦,

135◦, 180◦
40◦ ±45◦ 5.35 RBF

El Tests 45◦ 30◦,40◦,50◦ ±45◦ 5.35 RBF

Ap Size Tests 90◦ 40◦ ±30◦,±45◦,±60◦ 5.35 RBF

BW Tests 135◦ 40◦ ±45◦ 0.64,3.0,5.35 RBF
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Salient feature experiment results and analysis for extracted HRR feature vectors are

included in Section 4.1.1 through Section 4.1.4. The salient feature experiment results

and analysis for extracted SPLIT feature vectors may be found in Section 4.2.1 through

Section 4.2.4. Unless otherwise noted, all tables containing experimental results are

presented as the combined means of all 24 individual tests. In many cases, reducing an

entire set of experiments to the mean outputs allows for easier comparison of general test

results across a specific test parameter or class for clearer saliency recommendations. The

figures which accompany each set of experiments illustrate both individual test results as

well as overall means. The ultimate goal of the saliency experiments is to identify and

provide recommendations as to the specific feature vectors and SAR collection parameters

which provide the most impact to the SAR ATR classification process so that modelers and

ATR practitioners may save time and resources by focusing more attention on the salient

aspects of a SAR target.
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IV. Results and Analysis

4.1 Salient Feature Experiments for HRR Feature Vectors

The first type of feature vector explored in our saliency investigation is the HRR

feature vector. As discussed in Section 2.1, the extracted 1D HRR feature vector may be

expressed as (α, ke, ko, φ, r). Saliency experiment results using the HRR feature vector are

included in Section 4.1.1, Section 4.1.2, Section 4.1.3, and Section 4.1.4 below, followed

by experimental results using the extracted SPLIT feature vector.

4.1.1 Azimuth Angle Saliency Experiments for HRR Feature Vectors.

The first set of HRR experiments into target class saliency investigate the effects

of azimuth angle. Besides azimuth angle, all other SAR collection parameters are held

constant to ensure that any improvements or degradations in classification performance

may be attributed solely to radar azimuth. Therefore, all SAR target feature vectors are

extracted at 40◦ elevation with an aperture size of 5◦ total, or ±2.5◦ to either side of the

center azimuth, and the full 5.35 GHz of available bandwidth (BW). Additionally, the RBF

kernel is implemented for all RVM classifications.

Ten different azimuth angles are tested for saliency, beginning with the front of the

vehicles (0◦) and testing through the rear of the vehicles (180◦) in 22.5◦ increments to fully

characterize azimuth saliency on one half of each vehicle. Since vehicles are symmetric, it

is only necessary to test azimuth angles between 0◦ and 180◦, but one additional azimuth

angle is tested on the opposite half of the vehicles at 270◦. This tenth and final azimuth

angle is included in testing to compare with the results from its counterpart (90◦) to ensure

consistency within saliency results. The results in Table 4.1 highlight the performance of

the sedan class vehicles compared with the SUV class vehicles at the specified azimuths.

Each azimuth result in Table 4.1 represents the mean results of all 24 experiments illustrated

in Table 3.3.
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Table 4.1: Mean results for azimuth angle experiments 1 − 24 at 40◦ elevation, ±2.5◦

aperture size, and 5.35 GHz bandwidth.

Az # Train/Test
# RVs

Sedan/SUV

% RV

Sedan/SUV

MFW

Sedan/SUV

AFW

Sedan/SUV

Pe %

Sedan/SUV

0◦ 8416/2093 83.00/83.13 0.98/0.99 293.56/262.95 61.68/57.87 8.78/30.95

22.5◦ 12491/3265 98.08/98.04 0.78/0.78 253.92/238.87 58.23/55.61 9.14/21.43

45◦ 16215/3937 86.96/86.92 0.54/0.54 177.63/184.06 37.03/37.17 6.56/19.61

67.5◦ 12338/3039 74.79/75.12 0.60/0.61 242.06/225.79 55.04/52.91 3.20/35.50

90◦ 6413/1642 61.79/60.79 0.96/0.94 409.87/430.98 84.82/83.83 4.42/31.24

112.5◦ 15269/3868 64.41/63.79 0.42/0.41 160.11/152.50 34.18/42.59 2.29/18.17

135◦ 19022/4553 81.58/78.87 0.43/0.41 139.08/125.28 32.90/30.54 0.79/49.11

157.5◦ 16595/4145 81.62/79.20 0.49/0.47 127.39/120.15 28.80/26.64 2.76/30.41

180◦ 8511/2063 75.45/75.41 0.88/0.88 143.94/129.40 36.09/34.46 4.86/38.08

270◦ 6304/1612 61.62/61.95 0.97/0.98 591.14/590.01 98.14/97.62 4.40/29.15

To better illustrate the findings summarized in Table 4.1, Figure 4.1 through Figure 4.4

highlight the results for each of the 24 individual azimuth saliency experiments along with

the mean for each set of experiments. In addition to comparing the ten azimuth angles

under investigation, each figure separates the results of the sedan and SUV vehicles at each

azimuth for ease of class comparison.

Figure 4.1 illustrates the total number of HRR feature vectors incorporated for training

and testing within the RVM at each azimuth angle. The large differences between the

number of training and testing HRRs corresponds to the number of vehicles being trained

versus tested for each experiment. As shown in Table 3.3, five sedans and three SUVs

are used for training each experiment, while only one sedan and one SUV are used for

testing. Therefore, each set of training HRR feature vectors is approximately four times

larger than its corresponding set of test feature vectors. When comparing across azimuth
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Figure 4.1: Total extracted train and test HRR feature vectors for azimuth angle

experiments.

angles, notice that the canted vehicle azimuths(22.5◦, 45◦, 67.5◦, 112.5◦, 135◦ and 157.5◦)

produce significantly more training and test feature vectors over the same aperture size as

the specular azimuths(0◦, 90◦, 180◦ and 270◦). The largest amount of training and testing

data for the front and rear of the vehicles correspond to the vehicle corners at 45◦ and

135◦ azimuths. The increase in SAR data at the corner azimuths may be attributed to the

physical characteristics of the targets. At an elevation of 40◦, the airborne radar radiates a

larger amount of the vehicle surface that is directly returned to the receiver at the angled

azimuths than it does at the flat surface azimuths. While more computationally expensive,

the additional target feature vectors may provide benefits to ATR since more feature data

at the canted azimuths creates an increased opportunity to characterize salience.

The total number of relevant vector (RV)s identified by the RVM at each azimuth are

shown in Figure 4.2. Observe that while Figure 4.1 demonstrates fairly large differences in
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Figure 4.2: Total identified relevant HRR feature vectors for azimuth angle experiments.

the amount of training and test data at each azimuth, many of the azimuth angles found

similar relevant feature vector counts. The proficiency with which RVs are identified

may be further explored in Figure 4.3. It is clear in Figure 4.3 that the specular vehicle

surfaces contain the highest ratio of RVs to total training HRR feature vectors, identifying

approximately 1% of training data as relevant to classification decisions. Alternatively, the

canted azimuths demonstrate the lowest ratio of RVs to training data, with the rear vehicle

canted azimuths (112.5◦, 135◦ and 157.5◦) all averaging less than 0.5% of relevant training

feature vectors. As Tipping [13] suggests with the creation of the RVM [13], a sparse

solution is desirable to separate the two classes as efficiently as possible. The three rear

canted azimuths demonstrate the sparsest RVM training solution. While the four specular

azimuths produce a higher percentage of RVs due to the limited amount of training feature

vectors, the rear specular azimuth (180◦) proves slightly more compressible in creating the

decision boundary between the sedan and SUV classes. The initial azimuth test results
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therefore indicate an area of interest in regards to saliency at the rear vehicle azimuths,

especially the rear canted azimuth angles.

Figure 4.3: Percent of training HRR feature vectors deemed relevant for azimuth angle

experiments.

The next factor in determining azimuth saliency for ATR classification involves

examining probability of test classification error. Probability of error values for HRR

feature vectors across all tested azimuths are shown in Figure 4.4. Error calculations are

separated by individually training each class with the appropriate sedan and SUV vehicles

but only testing with either one sedan or one SUV test vehicle at a time to determine

individual class accuracy. As shown in Figure 4.4, the Pe results are quite different between

the two classes across varying azimuth. In particular, the sedan class performed well in

most experiments while the SUV class demonstrated many poor classification test results.

Several factors may explain the inconsistencies in error calculations. The sedan class of

the CV domes data set contains six total vehicles, while the SUV class contains only four.
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The mismatch forces the sedan class to be trained with five vehicles in each test, while

the SUV class is trained with only three. The additional training data in the sedan class

helps characterize the class more robustly prior to classification testing. In addition, the

six sedan class vehicles are more similar in terms of physical features than the four SUV

class vehicles. While the SUV class does contain two different models of Jeep, it also

contains a Mazda MPV, which may be considered more of a mini-van than an SUV, and a

Toyota Tacoma, which is an open bed pick-up truck. Therefore, the initial azimuth RVM

classification test results are not discouraging, but encouraging, because they expose the

aforementioned inconsistencies within the class data.

First analyzing the sedan class results in Figure 4.4, observe that the front vehicle

azimuths from 0◦ − 90◦ demonstrate a higher average classification test error than the rear

vehicle azimuths from 90◦ − 180◦. The favorable rear aspect Pe results are consistent with

the initial sparse RV training results found at the rear canted azimuths, adding to the case

of saliency for the rear azimuths. The SUV results are much more sporadic, with several

SUV class tests demonstrating a classification error of greater than 50%. Upon further

investigation, the majority of the results with greater than 50% error came from experiments

with the Tacoma pick-up truck as the test vehicle. Even if the SUV class is well trained with

three similar SUV class vehicles, when classification decisions are made with a vehicle as

physically dissimilar as a truck, classification test errors will be high as demonstrated here.

The poor SUV classification results tend to be slightly worse for the rear vehicle azimuths

compared to the front. The results may be attributed to the fact that the most significant

physical differences between the SUV vehicles are found from azimuths 90◦ − 180◦ (i.e.

the open bed of the Tacoma).

Considering all factors, notice that one azimuth outperformed all others in HRR

classification tests. Azimuth 112.5◦ demonstrated the lowest average Pe for SUV tests

and one of the lowest Pe averages for sedan tests. Azimuth 112.5◦ also belongs to the rear
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canted azimuth group previously deemed an area of interest in terms of saliency due to the

sparse identification of RVs. Initial investigation into the nature of saliency with extracted

HRR feature vectors has therefore highlighted 112.5◦ as the most desired azimuth tested,

followed by 157.5◦ as the second most desired azimuth. Also note that very similar Pe

results for both SUV and sedan testing were found at 90◦ and 270◦ azimuths, providing

verification of consistency within the salient feature identification algorithm at the two

corresponding azimuths.

Figure 4.4: Probability of RVM classification error for extracted HRR feature vectors as

seen throughout azimuth angle experiments.

Even with the identification of azimuth angles contributing most to effective SAR

binary classification, additional ATR aid may be provided by highlighting physical features

on the vehicle surfaces which are consistently relevant to classification decisions at the

desired azimuths. One method to highlight the physical features is adopted from the SPLIT

algorithm [8] and involves tracing the extracted frequency and polarization features to the
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canonical shape with the most similar ideal features. The primary difference from an ATR

stand point is that while SPLIT classifies image pixels deemed as peaks for a single vehicle,

we are classifying first HRR feature vectors, followed later by SPLIT feature vectors, that

are deemed most relevant to the separation of the two vehicle classes. In doing so, the

physical features identified most often are considered the salient target features that have the

greatest impact to target class identification of the sedan and SUV vehicles at the specified

parameters and should therefore be given the most attention for SAR ATR applications.

Several example histograms are provided below that identify the most common

canonical shapes corresponding to the RVs provided by the RVM at the specified azimuths.

In each example, all extracted feature vectors are classified in one histogram, and only

the relevant feature vectors are shown in a second histogram. Including a second plot

illustrating all extracted feature vectors for the specified parameters allows for analysis of

which canonical features were emphasized and which were deemphasized by the RVM

classifier. Additionally, a dividing line included in each feature bar distinguishes the class

origin of feature vectors, with sedan features below the line and SUV features above the

line.

In Figure 4.5a for 90◦ azimuth, horizontal cylinders parallel with the ground plane

are the most common RV highlighted, followed by horizontal dihedrals with the folded

edge parallel to the ground plane. The result makes intuitive sense since a large amount of

radiated energy at the 90◦ specular azimuth is returned from the roof line of the vehicles

as well as the double-bounce reflection between the side of the vehicles and the ground

plane. It is therefore important for ATR effectiveness that the roof line of the vehicles

at 90◦ be properly modeled for improved separation and class identification. Horizontal

cylinders and horizontal dihedrals are also the two most common shapes across all extracted

HRR feature vectors in Figure 4.5b. While the RVM increased dependence on horizontal
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cylinders, other canonicals such as horizontal dihedrals and sphere/plate features were

deemphasized within the classification process.

Histogram results for another specular azimuth, 180◦, are shown in Figure 4.6. Similar

relevant canonical shape results are demonstrated, with two notable exceptions. First,

there is a significant increase in vertical cylinders perpendicular to the ground plane being

identified as relevant. The result requires that any side-to-side curved surface features

from the rear aspect of the vehicles be paid close attention for improved classification

performance. Second, RVM results at 180◦ azimuth demonstrate a large amount of trihedral

features as relevant to vehicle classification decisions. Some of the most common shapes

across all extracted feature vectors are devalued, while some less common features, such

as trihedrals, are given increased significance by the RVM. The trihedral features toward

the rear aspect of the vehicles may be found in small crevices, most notably in the corner

reflections returned from the bed of the Tacoma pick-up truck.

Focusing now on the azimuths identified as desired to target class identification,

RV shape classification histograms are shown for 112.5◦ and 157.5◦ in Figure 4.7 and

Figure 4.8, respectively. At both azimuths, the three most relevant canonical shapes

for target class identification are horizontal cylinders, horizontal dihedrals, and vertical

edges/wires. The sharp increase in edge/wire classifications may be attributed to the fact

that at the canted azimuths, less radiated energy is directly returned to the radar from large

flat vehicle surfaces and much of the energy that is received is derived from more obscure

vehicle features with leading edges such as door handles, gas doors, and wheel wells.

Sharper focus on the smaller, more unique features of the sedan and SUV class vehicles at

the desired rear canted azimuths, specifically 112.5◦ and 157.5◦, provides the most potential

for effective SAR binary classification performance with extracted HRR feature vectors.
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(a) Identified Relevant HRR Feature Vectors Only

(b) All Extracted HRR Feature Vectors

Figure 4.5: Azimuth angle experiment histograms for HRR FVs (Az 90◦). The dividing

line illustrated on each canonical feature bar separates FVs according to class origin with

sedan FVs below the line and SUV FVs above the line. The value over each dividing

line indicates the fraction of only sedan FVs, and the value at the top of each feature bar

indicates the fraction of all FVs classified as the specified canonical shape.
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(a) Identified Relevant HRR Feature Vectors Only

(b) All Extracted HRR Feature Vectors

Figure 4.6: Azimuth angle experiment histograms for HRR FVs (Az 180◦). The dividing

line illustrated on each canonical feature bar separates FVs according to class origin with

sedan FVs below the line and SUV FVs above the line. The value over each dividing

line indicates the fraction of only sedan FVs, and the value at the top of each feature bar

indicates the fraction of all FVs classified as the specified canonical shape.
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(a) Identified Relevant HRR Feature Vectors Only

(b) All Extracted HRR Feature Vectors

Figure 4.7: Azimuth angle experiment histograms for HRR FVs (Az 112.5◦). The dividing

line illustrated on each canonical feature bar separates FVs according to class origin with

sedan FVs below the line and SUV FVs above the line. The value over each dividing

line indicates the fraction of only sedan FVs, and the value at the top of each feature bar

indicates the fraction of all FVs classified as the specified canonical shape.
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(a) Identified Relevant HRR Feature Vectors Only

(b) All Extracted HRR Feature Vectors

Figure 4.8: Azimuth angle experiment histograms for HRR FVs (Az 157.5◦). The dividing

line illustrated on each canonical feature bar separates FVs according to class origin with

sedan FVs below the line and SUV FVs above the line. The value over each dividing

line indicates the fraction of only sedan FVs, and the value at the top of each feature bar

indicates the fraction of all FVs classified as the specified canonical shape.

58



4.1.2 Aperture Size Saliency Experiments for HRR Feature Vectors.

The next set of salient HRR feature vector experiments focuses on the effects of

aperture size. The three aperture sizes considered for extracted HRR feature vectors are

3◦ (±1.5◦), 5◦ (±2.5◦), and 10◦ (±5◦). Similar to previous experiments, all other parameters

are held constant so that saliency results may be attributed only to aperture size. Elevation

remains 40◦ and azimuth is centered on either 90◦ or 180◦ in order to provide two sets of

saliency results for aperture size testing. The RBF kernel is implemented into the RVM, and

extracted training and test feature data sets are held constant in accordance with Table 3.3.

Table 4.2: Mean results for aperture size experiments 1−24 at 180◦ azimuth, 40◦ elevation,

and 5.35 GHz bandwidth.

Ap Size # Train/Test
# RVs

Sedan/SUV

% RV

Sedan/SUV

MFW

Sedan/SUV

AFW

Sedan/SUV

Pe %

Sedan/SUV

±1.5◦ 5156/1234 50.1/49.6 0.97/0.96 112.94/98.54 32.47/30.33 4.03/42.34

±2.5◦ 8511/2063 75.45/75.41 0.88/0.88 143.94/129.40 36.09/34.46 4.85/38.08

±5◦ 16697/4102 132.87/130.25 0.79/0.78 195.47/209.40 38.28/38.49 6.36/39.19

The first set of aperture size experiments are conducted at 180◦ azimuth with mean

results shown in Table 4.2. All individual and experimental results summarized in Table 4.2

are illustrated in Figure 4.9 through Figure 4.12. Figure 4.9 demonstrates that, as expected,

increasing aperture size drives an increase in the amount of extracted training and testing

HRR feature vectors for RVM classification. The increase in data results in a higher number

of identified RVs as shown in Figure 4.10 but a lower proportion of training data being

identified as relevant as illustrated in Figure 4.11. While the increase in SAR data for larger

aperture sizes incurs an increased computational expense throughout the feature extraction,

feature vector creation, and RVM feature vector classification processes, the sparsest RVM
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output is generally desired in terms of proportion of identified RVs to total processed data

for 10◦ aperture size as shown in Figure 4.11.

Figure 4.9: Total extracted train and test HRR feature vectors for aperture size experiments

at 180◦ azimuth.

The probability of test classification error results for aperture size experiments at

180◦ azimuth are shown in Figure 4.12. Results do not demonstrate any significant

improvements in Pe values as aperture size increases, indicating that the computational

expense required to process a 10◦ aperture size may not be justifiable in this case. At the

other end of the spectrum, a 3◦ aperture size is training classes and making classification

test decisions from a much smaller set of HRR feature vectors, making it vulnerable to

large increases or decreases in classification error from potential anomalies in the SAR

data within such a limited aperture. Therefore, a 5◦ aperture size is recommended, but a
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Figure 4.10: Total identified relevant HRR feature vectors for aperture size experiments at

180◦ azimuth.

second set of aperture size test results is later provided at 90◦ azimuth to verify the initial

results observed.

Histograms of the identified RVs classified into the physical target features which

aid most in the RVM classification process for 3◦ and 10◦ aperture sizes are shown in

Figure 4.13a and Figure 4.14a respectively. The 5◦ aperture size histograms for 180◦

azimuth were previously illustrated in Figure 4.6. While all three aperture sizes feature

horizontal cylinders as the most impactful physical target feature, some vehicle features

prove more impactful than others as aperture size varies. For example, the 3◦ aperture

size demonstrates less target class identification dependence on the horizontal dihedral but

slightly more dependence on the trihedral and vertical cylinder features. With such a narrow

focus on the rear aspect of the vehicles at a 3◦ aperture size, features common across all

vehicles at 180◦ azimuth, such as horizontal dihedrals, are deemed less relevant by the RVM
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Figure 4.11: Percent of training HRR feature vectors deemed relevant for aperture size

experiments at 180◦ azimuth.

classifier with a limited data set, while more unique target features, such as trihedrals, tend

to stand out in the feature vector weighting process. As aperture size grows further from

the specular, however, horizontal dihedral feature vectors gain relevance in comparisons

between sedan and SUV class vehicles as shown for 5◦ and 10◦ aperture sizes.

A second set of aperture size experiments are conducted at 90◦ azimuth with all other

parameters held constant in accordance with Table 3.4. The mean results for the second set

of aperture size tests are featured in Table 4.3, and individual test results are illustrated in

Figure 4.15 through Figure 4.18. Extracted training and testing HRR feature vector totals

in Figure 4.15, RV totals in Figure 4.16, and percentage of training HRR feature vectors

deemed relevant in Figure 4.17 are all consistent with the previously discussed aperture

size results at 180◦ azimuth. Based on the 90◦ azimuth results, the 10◦ aperture size is

preferred due to the sparsity with which the two large SAR training data sets are able to
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Figure 4.12: Probability of RVM classification error for extracted HRR feature vectors as

seen throughout aperture size experiments at 180◦ azimuth.

be separated in the transformed kernel space. Since a 10◦ aperture size requires increased

computational expense, however, Pe results assist in determining the overall aperture size

saliency recommendation for 90◦ azimuth.

Table 4.3: Mean results for aperture size experiments 1 − 24 at 90◦ azimuth, 40◦ elevation,

and 5.35 GHz bandwidth.

Ap Size # Train/Test
# RVs

Sedan/SUV

% RV

Sedan/SUV

MFW

Sedan/SUV

AFW

Sedan/SUV

Pe %

Sedan/SUV

±1.5◦ 3733/962 44.79/43.66 1.20/1.17 380.92/382.40 94.35/93.93 5.17/29.83

±2.5◦ 6413/1642 61.79/60.79 0.96/0.94 409.87/430.98 84.82/83.83 4.42/31.23

±5◦ 14138/3596 114.29/114.29 0.80/0.80 469.70/431.57 79.37/77.79 4.44/29.78
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Probability of test classification error results are illustrated in Figure 4.18. Similar to

aperture size testing at 180◦ azimuth, no significant improvement in classification error is

achieved by increasing aperture. One exception seen in Figure 4.18 is that the individual

experiments with the highest Pe values, those greater than 50% in the 3◦ and 5◦ aperture

sizes, fell to less than 50% in the 10◦ aperture case. The modest improvement in Pe

outlier values, however, is not enough to justify the increased resources required for a

10◦ SAR collection aperture. It should be noted that the six individual experiments with

the highest Pe values in all three aperture sizes correspond to the Toyota Tacoma as the

test vehicle. The poor classification results therefore have more to do with increased

separation in the relationship between training and test feature vector data than with

the aperture sizes being investigated for salience. While the 3◦ and 5◦ aperture sizes

acheived similar Pe results, an aperture size of 5◦ includes a slightly larger, and therefore

more target class representative set of extracted HRR feature vectors for classification.

Consistent with aperture size experiments conducted at 180◦ azimuth, an aperture size of

5◦ is recommended for improving ATR classification potential at 90◦ azimuth between

sedan and SUV class vehicles.

Target feature histograms for 3◦ and 10◦ aperture sizes at 90◦ azimuth are shown in

Figure 4.19 and Figure 4.20, respectively. The 5◦ aperture size histograms for 90◦ azimuth

were previously illustrated in Figure 4.5. While the total number of relevant feature vectors

being classified increases as aperture size grows, the target feature index rankings remain

fairly constant. The top five relevant canonical shapes are in the same order of importance

for all three aperture sizes tested. This result indicates that increasing aperture size from

3◦ to 10◦ does not provide additional salient target feature information at 90◦ azimuth. At

the 90◦ spectral azimuth, horizontal cylinders, primarily stemming from the roof line of the

vehicles, and horizontal dihedrals, formed between the flat surfaces of vehicle doors and

the ground plane, should be provided the most attention for target class identification.
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(a) Identified Relevant HRR Feature Vectors Only

(b) All Extracted HRR Feature Vectors

Figure 4.13: Aperture size experiment histograms for HRR FVs (Ap size 3◦, Az 180◦).

The dividing line illustrated on each canonical feature bar separates FVs according to class

origin with sedan FVs below the line and SUV FVs above the line. The value over each

dividing line indicates the fraction of only sedan FVs, and the value at the top of each

feature bar indicates the fraction of all FVs classified as the specified canonical shape.
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(a) Identified Relevant HRR Feature Vectors Only

(b) All Extracted HRR Feature Vectors

Figure 4.14: Aperture size experiment histograms for HRR FVs (Ap size 10◦, Az 180◦).

The dividing line illustrated on each canonical feature bar separates FVs according to class

origin with sedan FVs below the line and SUV FVs above the line. The value over each

dividing line indicates the fraction of only sedan FVs, and the value at the top of each

feature bar indicates the fraction of all FVs classified as the specified canonical shape.
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Figure 4.15: Total extracted train and test HRR feature vectors for aperture size experiments

at 90◦ azimuth.

Figure 4.16: Total identified relevant HRR feature vectors for aperture size experiments at

90◦ azimuth.
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Figure 4.17: Percent of training HRR feature vectors deemed relevant for aperture size

experiments at 90◦ azimuth.

Figure 4.18: Probability of RVM classification error for extracted HRR feature vectors as

seen throughout aperture size experiments at 90◦ azimuth.
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(a) Identified Relevant HRR Feature Vectors Only

(b) All Extracted HRR Feature Vectors

Figure 4.19: Aperture size experiment histograms for HRR FVs (Ap size 3◦, Az 90◦). The

dividing line illustrated on each canonical feature bar separates FVs according to class

origin with sedan FVs below the line and SUV FVs above the line. The value over each

dividing line indicates the fraction of only sedan FVs, and the value at the top of each

feature bar indicates the fraction of all FVs classified as the specified canonical shape.
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(a) Identified Relevant HRR Feature Vectors Only

(b) All Extracted HRR Feature Vectors

Figure 4.20: Aperture size experiment histograms for HRR FVs (Ap size 10◦, Az 90◦).

The dividing line illustrated on each canonical feature bar separates FVs according to class

origin with sedan FVs below the line and SUV FVs above the line. The value over each

dividing line indicates the fraction of only sedan FVs, and the value at the top of each

feature bar indicates the fraction of all FVs classified as the specified canonical shape.
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4.1.3 Elevation Angle Saliency Experiments for HRR Feature Vectors.

The effects of elevation angle on saliency and target class identification are tested

using three realistic flight path elevation angles: 30◦, 40◦, and 50◦. All experiments are

conducted with all available bandwidth (5.35 GHz) and a 5◦ aperture size at two separate

azimuths, 90◦ and 180◦. The same 24 original experiments in Table 3.3 are tested once

again for consistency. A summary of all elevation test results at 180◦ azimuth are shown in

Table 4.4.

Table 4.4: Mean results for elevation angle experiments 1 − 24 at 180◦ azimuth, ±2.5◦

aperture size, and 5.35 GHz bandwidth.

El # Train/Test
# RVs

Sedan/SUV

% RV

Sedan/SUV

MFW

Sedan/SUV

AFW

Sedan/SUV

Pe %

Sedan/SUV

30◦ 7894/1921 62.3/61.2 0.79/0.77 110.60/109.31 28.92/27.77 1.85/43.63

40◦ 8511/2063 75.45/75.41 0.88/0.88 143.94/129.40 36.09/34.46 4.86/38.08

50◦ 8904/2231 70.6/71.9 0.79/0.80 155.45/152.06 41.04/40.26 5.51/35.27

The total number of extracted training and testing HRR feature vectors are illustrated

in Figure 4.21. Unlike the azimuth and aperture size experiments, the elevation experiments

are conducted at the same azimuth with the same aperture size, so the size of the extracted

feature vector data sets are relatively close. Observe in Figure 4.21, however, that the

amount of training and testing data for RVM classification gradually rises as elevation

moves from 30◦ to 50◦, demonstrating that a steeper elevation angle reveals more target

surface to the radar for the CV data domes targets with extracted HRR feature vectors. The

total number of RVs output by the RVM is shown in Figure 4.22 and the ratio of RVs to

training feature vectors is shown in Figure 4.23. In both figures, notice the increased spread

in standard deviation of results at 30◦ elevation compared to 40◦ and 50◦. In Figure 4.23,

for example, the standard deviation across all 24 experiments is 0.162 for the sedan class
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and 0.160 for the SUV class at 30◦, compared to 0.078/0.082 (sedan/SUV) at 40◦ and

0.092/0.083 (sedan/SUV) at 50◦. The mean values in Figure 4.23 are fairly similar between

30◦ and 50◦, so we move to Pe results for further analysis of elevation angle saliency.

Figure 4.21: Total extracted train and test HRR feature vectors for elevation angle

experiments at 180◦ azimuth.

Probability of RVM classification error results for elevation tests at 180◦ azimuth are

shown in Figure 4.24. Results show that 30◦ elevation achieved the lowest average Pe for

sedan tests, while 50◦ elevation had the lowest mean classification error for SUV tests.

None of the elevation angles at 180◦ azimuth demonstrated clear salience worthy of being

recommended for improving SAR binary classification performance. Therefore, elevation

experiments are also conducted at 90◦ azimuth for further investigation into elevation angle

saliency.
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Figure 4.22: Total identified relevant HRR feature vectors for elevation angle experiments

at 180◦ azimuth.

Salient target feature histograms are illustrated for elevations 30◦ and 50◦ at 180◦

azimuth in Figure 4.25 and Figure 4.26, respectively. The histograms for 40◦ elevation

were previously shown in Figure 4.6. Observe that with azimuth angle, aperture size, and

bandwidth all held constant, the change in elevation angle alone presents new relevant

target features to the radar. While the most relevant shapes for classification are similar

for elevations 40◦ and 50◦, elevation 30◦ demonstrates an increased dependence on vertical

edges and vertical cylinders for classification decisions. This information may be useful

in characterizing elevation saliency. Elevations 40◦ and 50◦ present a steeper, more

top-down view of the vehicles, emphasizing the significance of the horizontal cylinders

making up the roof lines and the horizontal dihedrals formed with the speculars of the

vehicle and the ground plane. Since horizontal cylinders and dihedrals are two primary

target features common in all vehicles, however, potential complications may arise in

vehicle classifications at steeper azimuths. While horizontal cylinders and dihedrals remain
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Figure 4.23: Percent of training HRR feature vectors deemed relevant for elevation angle

experiments at 180◦ azimuth.

relevant target features for 30◦ elevation, additional features gain relevance that may prove

valuable in vehicle classification decisions. The roofs of civilian vehicles are all relatively

similar, but the bodies of the vehicles below the roof lines contain many identifying physical

features separating one vehicle from another. Highlighting the distinct body style features

at lower elevation angles may allow for increased separability among extracted feature

vectors and serve to improve vehicle classifications for application to ATR.

Another set of elevation angle experiments is conducted at 90◦ azimuth with mean

results shown in Table 4.5. In addition, the total amount of extracted HRR feature vectors

for training and testing, total number of RVs, and percent of training HRR feature vectors

deemed relevant are illustrated in Figure 4.27, Figure 4.28, and Figure 4.29, respectively.

Similar to 180◦ azimuth, 30◦ elevation produces slightly less extracted feature vectors for

classification than 40◦ and 50◦ elevations, but overall the size of the SAR data sets are
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Figure 4.24: Probability of RVM classification error for extracted HRR feature vectors as

seen throughout elevation angle experiments at 180◦ azimuth.

relatively close for all three elevation angles tested. In Figure 4.28 and Figure 4.29, notice

that 50◦ elevation identifies fewer RVs on average than do 30◦ and 40◦ elevations, producing

a more desired RVM output by both representing and separating the sedan and SUV classes

with a more sparse set of HRR feature vectors.

Table 4.5: Mean results for elevation angle experiments 1 − 24 at 90◦ azimuth, ±2.5◦

aperture size, and 5.35 GHz bandwidth.

El # Train/Test
# RVs

Sedan/SUV

% RV

Sedan/SUV

MFW

Sedan/SUV

AFW

Sedan/SUV

Pe %

Sedan/SUV

30◦ 5754/1532 59.29/59.70 1.03/1.03 429.10/399.04 87.29/90.21 5.65/16.04

40◦ 6413/1642 61.79/60.79 0.96/0.94 409.87/430.98 84.82/83.83 4.41/31.24

50◦ 6194/1678 49.45/50.25 0.79/0.81 227.41/228.60 51.71/52.66 10.94/20.14
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Referring now to the probability of classification error values in Figure 4.30, 30◦

elevation significantly outperformed 40◦ and 50◦ elevations overall. Additionally, 30◦

elevation experiments demonstrated no poor classification test outliers as seen in the other

two elevations at 90◦ azimuth. All classification error values greater than 40% in 40◦ and

50◦ elevations were a result of the Toyota Tacoma truck being tested, but the same Tacoma

tests at 30◦ elevation produced RVM classification errors just over 20%.

All extracted and relevant HRR feature vectors classified into physical canonical

shapes and ranked as histograms are shown for 90◦ azimuth in Figure 4.31, Figure 4.5,

and Figure 4.32, for elevations 30◦, 40◦, and 50◦, respectively. Results remained consistent

with the relevant target features discussed for 180◦ azimuth in that 40◦ and 50◦ elevations

demonstrated similar feature rankings while 30◦ elevation highlighted many additional

unique target features as relevant to classification decisions. The increase in distinct target

features at 30◦ elevation is a benefit to vehicle classification performance, as it allows more

opportunity for separation of sedan and SUV class HRR feature vectors. This assertion is

supported by the improvement in Pe at 30◦ elevation shown in Figure 4.30.

Considering all aspects of the brief investigation into the nature of elevation angle

saliency for extracted HRR feature vectors, 30◦ is the recommended elevation angle for

maximizing potential vehicle classification performance. The recommendation, however,

applies only to our specific set of experiments with the chosen parameters and the AFRL

CV domes SAR data set. The process implemented here may be applied to new classes

of SAR data to characterize elevation angle salience, but the results will be specific to the

experiments, parameters, and data chosen for that particular salient feature analysis.
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(a) Identified Relevant HRR Feature Vectors Only

(b) All Extracted HRR Feature Vectors

Figure 4.25: Elevation angle experiment histograms for HRR FVs (El 30◦, Az 180◦). The

dividing line illustrated on each canonical feature bar separates FVs according to class

origin with sedan FVs below the line and SUV FVs above the line. The value over each

dividing line indicates the fraction of only sedan FVs, and the value at the top of each

feature bar indicates the fraction of all FVs classified as the specified canonical shape.
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(a) Identified Relevant HRR Feature Vectors Only

(b) All Extracted HRR Feature Vectors

Figure 4.26: Elevation angle experiment histograms for HRR FVs (El 50◦, Az 180◦). The

dividing line illustrated on each canonical feature bar separates FVs according to class

origin with sedan FVs below the line and SUV FVs above the line. The value over each

dividing line indicates the fraction of only sedan FVs, and the value at the top of each

feature bar indicates the fraction of all FVs classified as the specified canonical shape.
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Figure 4.27: Total extracted train and test HRR feature vectors for elevation angle

experiments at 90◦ azimuth.

Figure 4.28: Total identified relevant HRR feature vectors for elevation angle experiments

at 90◦ azimuth.
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Figure 4.29: Percent of training HRR feature vectors deemed relevant for elevation angle

experiments at 90◦ azimuth.

Figure 4.30: Probability of RVM classification error for extracted HRR feature vectors as

seen throughout elevation experiments at 90◦ azimuth.
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(a) Identified Relevant HRR Feature Vectors Only

(b) All Extracted HRR Feature Vectors

Figure 4.31: Elevation angle experiment histograms for HRR FVs (El 30◦, Az 90◦). The

dividing line illustrated on each canonical feature bar separates FVs according to class

origin with sedan FVs below the line and SUV FVs above the line. The value over each

dividing line indicates the fraction of only sedan FVs, and the value at the top of each

feature bar indicates the fraction of all FVs classified as the specified canonical shape.
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(a) Identified Relevant HRR Feature Vectors Only

(b) All Extracted HRR Feature Vectors

Figure 4.32: Elevation angle experiment histograms for HRR FVs (El 50◦, Az 90◦). The

dividing line illustrated on each canonical feature bar separates FVs according to class

origin with sedan FVs below the line and SUV FVs above the line. The value over each

dividing line indicates the fraction of only sedan FVs, and the value at the top of each

feature bar indicates the fraction of all FVs classified as the specified canonical shape.
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4.1.4 Bandwidth Saliency Experiments for HRR Feature Vectors.

The final SAR collection parameter investigated for saliency of extracted HRR feature

vectors is bandwidth. The effects of bandwidth on classification performance are observed

for three possible bandwidths. The three bandwidths include the maximum available

bandwidth for the CV data domes vehicles, 5.35 GHz, a mid level, but still large, bandwidth

of 3.0 GHz, and a real-world operational bandwidth of 640 MHz. The lowest bandwidth

of 640 MHz was chosen to mimic AFRL’s Sensor Data Management System (SDMS)

real-world Gotcha SAR data collection of various target scenes [29]. Mean results for the

original 24 experiments over the three possible bandwidths at 180◦ azimuth are shown in

Table 4.6.

Table 4.6: Mean results for bandwidth experiments 1 − 24 at 180◦ azimuth, 40◦ elevation,

and 5.35 GHz bandwidth.

El # Train/Test
# RVs

Sedan/SUV

% RV

Sedan/SUV

MFW

Sedan/SUV

AFW

Sedan/SUV

Pe %

Sedan/SUV

640MHz 3629/892 62.92/62.04 1.74/1.71 188.63/179.34 36.09/33.69 5.74/32.52

3.0GHz 6866/1680 77.37/74.20 1.12/1.08 281.46/291.49 40.61/38.35 4.74/36.59

5.35GHz 8511/2063 75.45/75.41 0.88/0.88 143.94/129.40 36.09/34.46 4.86/38.08

The amount of extracted training and testing HRR feature vectors for RVM

classification at each bandwidth are shown in Figure 4.33. As expected, a steady increase

occurred in the SAR data sets as bandwidth rose from 640 MHz to the full 5.35 GHz.

Post RVM classification, the total number of identified RVs are shown in Figure 4.34, and

the percent of training feature vectors constituted as relevant are illustrated in Figure 4.35.

Similar to aperture size saliency testing, larger SAR data sets, such as those using 5.35

GHz bandwidth or a 10◦ aperture size, are preferred for RVM classification due to the

compressibility with which the RVM is able to sparsely, yet accurately, represent the data.
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The downside to extremely large SAR phase history data sets, however, is the increased

computational cost required to fully characterize saliency.

Figure 4.33: Total extracted train and test HRR feature vectors for bandwidth experiments

at 180◦ azimuth.

Probability of RVM classification error results are shown in Figure 4.36. The results

were not expected, however, as testing with 640 MHz bandwidth outperformed the two

larger bandwidths for SUV experiments and was only slightly behind the other bandwidths

for sedan experiments. The Pe results may indicate that an operational bandwidth around

640 MHz is sufficient to collect SAR phase history data of targets for effective RVM

classification and other ATR applications. Additional bandwidth experiments at a separate

azimuth angle are later conducted for verification of the initial results.

Before declaring 640 MHz as the desired bandwidth for 180◦ azimuth due to the

favorable Pe results and reduced computational complexity, we must examine the salient
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Figure 4.34: Total identified relevant HRR feature vectors for bandwidth experiments at

180◦ azimuth.

physical target features for classification. Previous parameter testing, to include azimuth,

elevation, and aperture size, all use salient target feature histograms to identify the most

significant physical shapes on the target surfaces contributing to classification decisions

between sedan and SUV vehicles. The salient feature histogram analysis method provides

excellent benefits to improving the classification process for ATR applications such

as modeling and simulation by highlighting the target feature types that demand the

greatest level of attention. Because azimuth, elevation, and aperture size testing involve

collecting SAR target data from different vehicle aspects, however, the canonical shape

histograms may only be used to aid in SAR classification performance for the specified

parameters within each case. Since bandwidth testing involves comparing SAR target data

from the same angular vehicle aspects, however, additional saliency information may be

gathered by comparing the bandwidth histograms for potential misclassifications at reduced

bandwidths.
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Figure 4.35: Percent of training HRR feature vectors deemed relevant for bandwidth

experiments at 180◦ azimuth.

Identified relevant HRR feature vectors along with all extracted HRR feature vectors

are once again classified as canonical shapes and presented as histograms for 640 MHz in

Figure 4.37, for 3 GHz in Figure 4.38, and for 5.35 GHz in Figure 4.6. All three bandwidths

recognize horizontal cylinders as the most relevant canonical shape to classification

decisions, but beyond that, feature rankings vary. Consistency may be recognized across all

three bandwidths in the fact that the top five canonical shapes for classification decisions

are the same for all three bandwidths. The relative dependence on one target feature over

another varies as bandwidth is adjusted, citing that the degradation in the resolution of

the collected SAR data may have adverse affects on some target feature classifications at

reduced bandwidths. Overall, however, the 640 MHz salient feature results are consistent

enough with higher bandwidth results to highlight the top five most significant target

features with little more than 10% of the total available bandwidth. In order to avoid as

many target feature misclassifications as possible from degraded resolution, the desired
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Figure 4.36: Probability of RVM classification error for extracted HRR feature vectors as

seen throughout bandwidth experiments at 180◦ azimuth.

bandwidth recommendation for 180◦ azimuth is as much as available resources allow above

the operational Gotcha [29] bandwidth of 640 MHz.

A second set of bandwidth experiments is conducted at 90◦ azimuth. All other

parameters are held constant so that only effects of the varying bandwidth parameter may

be observed. The mean results are shown in Table 4.7. To better visualize the results,

Figure 4.39 through Figure 4.42 highlight the most significant findings contributing to the

investigation into bandwidth saliency. The total amount of extracted training and testing

HRR feature vectors in Figure 4.39, the amount of RVs identified by the RVM classifier in

Figure 4.40, and the ratio of RVs to training HRR feature vectors in Figure 4.41 all remain

consistent with the corresponding bandwidth results for 180◦ azimuth. One exception is

that overall, less SAR data is collected on the vehicle targets at 90◦ azimuth than at 180◦

azimuth. As expected, the largest bandwidth creates the sparsest set of RVs relative to

87



the size of the training data set in Figure 4.41. Prior to weighing resource requirements

and probability of test classification error results, 5.35 GHz would be the ideal desired

bandwidth in regards to saliency.

Table 4.7: Mean results for bandwidth experiments 1 − 24 at 90◦ azimuth, 40◦ elevation,

and 5.35 GHz bandwidth.

El # Train/Test
# RVs

Sedan/SUV

% RV

Sedan/SUV

MFW

Sedan/SUV

AFW

Sedan/SUV

Pe %

Sedan/SUV

640MHz 2588/642 47.12/45.29 1.81/1.75 566.31/567.96 64.37/66.11 2.82/31.83

3.0GHz 5195/1311 62.70/63.16 1.20/1.21 558.08/502.16 104.11/99.25 4.54/32.43

5.35GHz 6413/1642 61.79/60.79 0.96/0.94 409.87/430.98 84.82/83.83 4.42/31.23

We turn now to the bandwidth experiment Pe results at 90◦ azimuth, presented in

Figure 4.42. Similar to results seen at 180◦ azimuth, no significant improvement in Pe is

observed as bandwidth increases. In fact, sedan experiments at 640 MHz demonstrated

the lowest average Pe value of the three bandwidths tested. All three bandwidths were

consistent in that a small group of individual experiments demonstrated Pe results greater

than 50%. Upon further investigation, it was discovered that all of the over 50% error

results, and thus any Pe result greater than 40% in Figure 4.42, belonged to experiments

in which the Tacoma pick-up truck was the vehicle under test, an adverse effect stemming

from the relationship between physically dissimilar training and test vehicle class feature

data.

Histograms for bandwidth experiments at 90◦ azimuth are created for analysis of

relevant target features between the sedan and SUV classes. The classified HRR feature

vectors for 640 MHz bandwidth are shown in Figure 4.43, for 3 GHz bandwidth in
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Figure 4.44, and for 5.35 GHz in Figure 4.5. Similar to bandwidth experiments at 180◦

azimuth, the potential for canonical feature misclassifications increases as bandwidth

decreases. Notice, for example, that the most relevant target feature for class separation

at 640 MHz in Figure 4.43a is the sphere/plate, while in Figure 4.44a at 3 GHz, the most

relevant feature is the horizontal cylinder. In many cases, the relevant feature vectors may

be referencing the same physical target feature and experiencing degraded classification

performance. At reduced bandwidths, poorer resolution may cause some target features

to blend, leading to inaccurate classification decisions. While sedan and SUV vehicle

SAR targets collected with less bandwidth may still demonstrate comparable Pe results

to the same targets collected with additional bandwidth, the classes being separated at

reduced bandwidths may not be accurate enough representations of the complex CV targets.

Subsequently, the conclusion in regards to saliency is that SAR CV targets should be

collected with as much bandwidth as available resources allow between the two lowest

bandwidths tested, 640 MHz and 3 GHz.
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(a) Identified Relevant HRR Feature Vectors Only

(b) All Extracted HRR Feature Vectors

Figure 4.37: Bandwidth experiment histograms for HRR FVs (BW 640 MHz, Az 180◦).

The dividing line illustrated on each canonical feature bar separates FVs according to class

origin with sedan FVs below the line and SUV FVs above the line. The value over each

dividing line indicates the fraction of only sedan FVs, and the value at the top of each

feature bar indicates the fraction of all FVs classified as the specified canonical shape.
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(a) Identified Relevant HRR Feature Vectors Only

(b) All Extracted HRR Feature Vectors

Figure 4.38: Bandwidth experiment histograms for HRR FVs (BW 3 GHz, Az 180◦). The

dividing line illustrated on each canonical feature bar separates FVs according to class

origin with sedan FVs below the line and SUV FVs above the line. The value over each

dividing line indicates the fraction of only sedan FVs, and the value at the top of each

feature bar indicates the fraction of all FVs classified as the specified canonical shape.
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Figure 4.39: Total extracted train and test HRR feature vectors for bandwidth experiments

at 90◦ azimuth.

Figure 4.40: Total identified relevant HRR feature vectors for bandwidth experiments at

90◦ azimuth.
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Figure 4.41: Percent of training HRR feature vectors deemed relevant for bandwidth

experiments at 90◦ azimuth.

Figure 4.42: Probability of RVM classification error for extracted HRR feature vectors as

seen throughout bandwidth experiments at 90◦ azimuth.
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(a) Identified Relevant HRR Feature Vectors Only

(b) All Extracted HRR Feature Vectors

Figure 4.43: Bandwidth experiment histograms for HRR FVs (BW 640 MHz, Az 90◦).

The dividing line illustrated on each canonical feature bar separates FVs according to class

origin with sedan FVs below the line and SUV FVs above the line. The value over each

dividing line indicates the fraction of only sedan FVs, and the value at the top of each

feature bar indicates the fraction of all FVs classified as the specified canonical shape.
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(a) Identified Relevant HRR Feature Vectors Only

(b) All Extracted HRR Feature Vectors

Figure 4.44: Bandwidth experiment histograms for HRR FVs (BW 3 GHz, Az 90◦). The

dividing line illustrated on each canonical feature bar separates FVs according to class

origin with sedan FVs below the line and SUV FVs above the line. The value over each

dividing line indicates the fraction of only sedan FVs, and the value at the top of each

feature bar indicates the fraction of all FVs classified as the specified canonical shape.
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4.2 Salient Feature Experiments for SPLIT Feature Vectors

In order to fully investigate the nature of saliency with regards to the effects on

SAR binary classification performance, a second type of feature vector is extracted for

classification and analysis. The SPLIT feature vector, expressed as (α, ke, ko, x, y), is

a feature vector corresponding to x and y pixel locations on a SAR backprojected image.

Details on the feature vector extraction methods are covered in Section 2.1, and background

regarding the SPLIT algorithm may be found in Section 2.3.2 [8].

Similar to HRR feature vector saliency experiments, SPLIT feature vector experiments

include testing azimuth angle, aperture size, elevation angle, and bandwidth SAR collection

parameters. In some cases, the parameter values for SPLIT experiments are modified from

HRR experiments due to the nature of the SPLIT algorithm. Primarily, aperture size testing

for SPLIT feature vectors is increased to 60◦ (±30◦), 90◦ (±45◦), and 120◦ (±60◦). The

reason for the increase in aperture lies in the essence of SPLIT. Extracted HRR feature

vectors include all received SAR phase history data, resulting in large feature vector data

sets over even relatively small apertures. As discussed in Section 2.3.2, however, the

primary goal of SPLIT is to classify SAR image peak pixels as canonical shapes according

to the extracted frequency and polarization features. In doing so, many pixels are excluded

for feature classification due to various thresholds which aim to highlight only image peaks.

The primary benefit of the peak search process is an increased confidence in the pixels

chosen for feature classification. The challenge in applying SPLIT feature vectors to our

saliency investigation is that fewer feature vectors are extracted over a given parameter set,

and as shown in HRR feature vector results, larger data sets are generally preferred for

RVM classification due to the sparsity in RV class representation. Increasing aperture sizes

allows the RVM sparsity concern to be addressed within SPLIT feature vector saliency

experiments. While the specific SPLIT feature vector saliency recommendations for the

aperture size parameter may differ from the HRR feature vector recommendations, the
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effects of aperture size on sedan and SUV vehicle classification decisions remain fully

characterized for both feature vector types. The full set of extracted SPLIT feature vector

aperture size experiment results and analysis are detailed in Section 4.2.2.

Azimuth angle experiment results for extracted SPLIT feature vectors are presented

and analyzed in Section 4.2.1. Due to the increase in aperture sizes for SPLIT testing, fewer

azimuth angles were included for testing due to the extensive overlapping of azimuths.

HRR testing included no overlap of azimuth angles, while most azimuths for SPLIT testing

are incorporated in three separate azimuth experiment sets, allowing azimuth saliency

to be sufficiently characterized with fewer parameter values. Elevation and bandwidth

experiments for extracted SPLIT feature vectors are conducted at the same three SAR

collection parameter values as the HRR feature vector experiments. The results and

discussion for SPLIT elevation and bandwidth experiments may be found in Section 4.2.3

and Section 4.2.4, respectively. All extracted SPLIT feature vector saliency experiments

are conducted according to the set-up parameters shown in Table 3.5.

4.2.1 Azimuth Angle Saliency Experiments for SPLIT Feature Vectors.

The mean results for azimuth angle experiments with extracted SPLIT feature vectors

are presented in Table 4.8. When comparing to the azimuth results for HRR feature vector

testing, observe that while the percent of training data identified by the RVM as relevant is

comparable between both extracted feature vector types, the total size of training, testing,

and RV data sets are significantly reduced throughout SPLIT testing due to the image peak

location properties of the original SPLIT algorithm. In initial testing, extracted SPLIT

feature vector data sets were even smaller than the results presented in Table 4.8, but

several configuration threshold properties were relaxed to increase the number of image

peak pixels processed by SPLIT for improved RVM performance. Most notably, the side

lobe level implemented in searching for image peaks for extraction was reduced from −32
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dB to −500 dB, significantly increasing the number of extracted pixels over a particular

aperture.

Table 4.8: Mean results for azimuth angle experiments 1−24 at 40◦ elevation, ±45◦ aperture

size, and 5.35 GHz bandwidth.

Az # Train/Test
# RVs

Sedan/SUV

% RV

Sedan/SUV

MFW

Sedan/SUV

AFW

Sedan/SUV

Pe %

Sedan/SUV

0◦ 1370.3/339.6 7.0/6.9 0.51/0.50 3.12/3.24 1.58/1.60 0.14/12.94

45◦ 1408.6/350.3 6.3/5.9 0.44/0.42 3.52/3.64 1.67/1.70 0.27/9.84

90◦ 1505.2/376.7 6.0/6.4 0.39/0.42 3.86/3.61 1.85/1.68 0.13/7.93

135◦ 1553.1/389.9 10.0/9.6 0.64/0.62 15.90/14.69 5.52/5.02 0.59/7.46

180◦ 1513.9/380.1 10.2/9.8 0.67/0.65 13.34/12.42 4.64/4.25 0.56/12.45

Extracted training and testing SPLIT feature vector totals are shown in Figure 4.45.

Unlike HRR feature vector extraction, azimuth angle did not have any significant effect on

the size of SPLIT feature vector training and testing data sets due to the selective nature of

the SPLIT algorithm. The identified RV totals and percent of training data deemed relevant

are illustrated in Figure 4.46 and Figure 4.47, respectively. While 90◦ azimuth achieved

slightly more sparse relevant vector outputs when compared to the other tested azimuths,

no clear area of interest may be highlighted in terms of saliency prior to analysis of test

classification results.

Probability of RVM classification results for SPLIT feature vector azimuth tests are

shown in Figure 4.48. First comparing the the SPLIT Pe results to the corresponding HRR

Pe results from Figure 4.4, we notice that overall, SPLIT feature vector testing performed

much better than HRR feature vector testing for both sedan and SUV classes. Similar

to HRR testing, SPLIT sedan tests outperformed SPLIT SUV tests due to the size and
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Figure 4.45: Total extracted train and test SPLIT feature vectors for azimuth angle

experiments.

physical target feature dissimilarities between the sedan and SUV data classes. On average,

however, the Pe results for extracted SPLIT feature vectors are significantly more accurate

than the extracted HRR feature vector Pe results. The improvement in test classification

error may be attributed to several reasons. First, using SAR backprojection to map pixel

locations to a SAR image may provide increased separability of feature vectors through the

RVM classification process. Choosing a feature set with x and y pixel coordinates may be

more conducive to kernel-based class separation than an HRR feature vector that includes

φ and r. Another reason for the overall improvement in Pe performance for SPLIT may

stem from the SPLIT image peak selection process. By throwing out pixels that do not

qualify for accurate classification, SPLIT creates smaller but more more separable classes

for the RVM to make classification decisions between, thus improving Pe test results. A

third reason for the improvement may come from the necessary increase in SPLIT aperture

size. Cumbersome extracted HRR feature vector data sets over small apertures may create
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Figure 4.46: Total identified relevant SPLIT feature vectors for azimuth angle experiments.

data classes muddled with many similar feature vectors, making classification decisions

more difficult for the RVM. The SPLIT selective image peak search over a larger aperture

creates more distinctive feature vectors from many different vehicle aspects, leading to a

more simplified class separation and representation throughout the RVM process.

Comparing only the SPLIT feature vector Pe results across azimuth, notice that 90◦

and 135◦ performed slightly better than the other azimuths tested, highlighting the side

specular and rear canted azimuths as the most important to accurate vehicle classification

decisions. The results agree with the HRR azimuth Pe results from Section 4.1.1 which

identifies the rear canted azimuths, specifically 112.5◦, as the most desired to RVM class

decisions.

Histograms highlighting the most significant physical target features for classification

are shown alongside all extracted SPLIT feature vectors in Figure 4.49 for 90◦ azimuth,

Figure 4.50 for 135◦ azimuth, and Figure 4.51 for 180◦ azimuth. All SPLIT feature vector
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Figure 4.47: Percent of training SPLIT feature vectors deemed relevant for azimuth angle

experiments.

histograms demonstrate less variation among physical target features than HRR feature

vector histograms due to the classification limitations implemented throughout the SPLIT

algorithm. At all three highlighted azimuths, horizontal cylinders are considered most

significant to classification decisions. At 90◦ azimuth, the target feature gaining the most

relevance from all extracted SPLIT feature vectors is the horizontal dihedral, which rose

from 21% of all feature vectors to 27% of relevant feature vectors. Another significant

emphasis in relevance may be observed at 180◦ azimuth, where trihedral features increased

from 13% of all SPLIT feature vectors to 21% of the relevant SPLIT feature vectors. The

upsurge in relevance of particular target features demand increased attention for improving

SAR classification performance.
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Figure 4.48: Probability of RVM classification error for extracted SPLIT feature vectors as

seen throughout azimuth angle experiments.
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(a) Identified Relevant SPLIT Feature Vectors Only

(b) All Extracted SPLIT Feature Vectors

Figure 4.49: Azimuth angle experiment histograms for SPLIT FVs (Az 90◦). The dividing

line illustrated on each canonical feature bar separates FVs according to class origin with

sedan FVs below the line and SUV FVs above the line. The value over each dividing

line indicates the fraction of only sedan FVs, and the value at the top of each feature bar

indicates the fraction of all FVs classified as the specified canonical shape.
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(a) Identified Relevant SPLIT Feature Vectors Only

(b) All Extracted SPLIT Feature Vectors

Figure 4.50: Azimuth angle experiment histograms for SPLIT FVs (Az 135◦). The dividing

line illustrated on each canonical feature bar separates FVs according to class origin with

sedan FVs below the line and SUV FVs above the line. The value over each dividing

line indicates the fraction of only sedan FVs, and the value at the top of each feature bar

indicates the fraction of all FVs classified as the specified canonical shape.
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(a) Identified Relevant SPLIT Feature Vectors Only

(b) All Extracted SPLIT Feature Vectors

Figure 4.51: Azimuth angle experiment histograms for SPLIT FVs (Az 180◦). The dividing

line illustrated on each canonical feature bar separates FVs according to class origin with

sedan FVs below the line and SUV FVs above the line. The value over each dividing

line indicates the fraction of only sedan FVs, and the value at the top of each feature bar

indicates the fraction of all FVs classified as the specified canonical shape.
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4.2.2 Aperture Size Saliency Experiments for SPLIT Feature Vectors.

The next set of experiments tested varying aperture size using extracted SPLIT feature

vectors. As previously discussed, aperture sizes were increased to accommodate the

selective SPLIT image peak search in order to provide the RVM classifier with enough

data for stable classification. Aperture sizes of 60◦(±30◦), 90◦(±45◦), and 120◦(±60◦) were

used at 90◦ azimuth, 40◦ elevation, and the full 5.35 GHz bandwidth. The results are

summarized in Table 4.9.

Table 4.9: Mean results for aperture size experiments 1 − 24 at 90◦ azimuth, 40◦ elevation,

and 5.35 GHz bandwidth.

Ap Size # Train/Test
# RVs

Sedan/SUV

% RV

Sedan/SUV

MFW

Sedan/SUV

AFW

Sedan/SUV

Pe %

Sedan/SUV

±30◦ 1058.9/268.0 6.0/6.4 0.56/0.60 3.78/4.29 1.93/2.10 0.33/5.89

±45◦ 1505.2/376.7 6.0/6.5 0.39/0.42 3.86/3.61 1.85/1.68 0.13/7.93

±60◦ 1951.2/488.7 6.7/7.5 0.34/0.38 2.62/2.85 1.42/1.56 0.24/10.38

The total number of extracted training and testing SPLIT feature vectors, identified

RVs, and ratio of RVs to training data are illustrated in Figure 4.52, Figure 4.53,

and Figure 4.54, respectively. As expected, results are consistent with aperture size

experimental results using extracted HRR feature vectors. As aperture size increases, the

amount of extracted SPLIT feature vectors increases, and since similar totals of RVs are

output by the RVM at all aperture sizes, the largest aperture size is preferred by the classifier

due to the compressibility with which it represents and separates the two classes.

Probability of classification error results are shown in Figure 4.55. While the ±45◦

aperture size demonstrated the lowest mean error for sedan tests, the smallest aperture

size tested, ±30◦, had the lowest average Pe for SUV tests. The RVM classification
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Figure 4.52: Total extracted train and test SPLIT feature vectors for aperture size

experiments at 90◦ azimuth.

tests performed well at all three aperture sizes, but considering the reduction in resource

requirements, ±30◦ is considered the desired aperture size for extracted SPLIT feature

vector experiments. Although the middle aperture size was chosen for HRR experiments

due to the potential classification vulnerability of the smallest aperture size(3◦), the smallest

aperture size for SPLIT feature vector experiments does not pose the same concerns

because the large increase in vehicle aspect coverage ensures radar exposure to many

distinguishable target features.

Target features aiding most in RVM classification are shown in Figure 4.56a for ±30◦

aperture, Figure 4.49a for ±45◦ aperture, and Figure 4.57a for ±60◦ aperture. Each RV

histogram is illustrated with the corresponding histogram for all extracted SPLIT feature

vectors at the specified parameters. Comparing Figure 4.56a and Figure 4.56b at ±30◦

aperture, observe that the RVM emphasizes horizontal cylinders and trihedrals while
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Figure 4.53: Total identified relevant SPLIT feature vectors for aperture size experiments

at 90◦ azimuth.

deemphasizing horizontal dihedrals for classification decisions. Increasing aperture size

to ±60◦ demonstrates relatively consistent results between Figure 4.57a and Figure 4.57b,

with the most significant increase in relevant SPLIT feature vectors stemming from

trihedral feature classifications.

108



Figure 4.54: Percent of training SPLIT feature vectors deemed relevant for aperture size

experiments at 90◦ azimuth.

Figure 4.55: Probability of RVM classification error for extracted SPLIT feature vectors as

seen throughout aperture size experiments at 90◦ azimuth.
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(a) Identified Relevant SPLIT Feature Vectors Only

(b) All Extracted SPLIT Feature Vectors

Figure 4.56: Aperture size experiment histograms for SPLIT FVs (Ap size 60◦, Az 90◦).

The dividing line illustrated on each canonical feature bar separates FVs according to class

origin with sedan FVs below the line and SUV FVs above the line. The value over each

dividing line indicates the fraction of only sedan FVs, and the value at the top of each

feature bar indicates the fraction of all FVs classified as the specified canonical shape.
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(a) Identified Relevant SPLIT Feature Vectors Only

(b) All Extracted SPLIT Feature Vectors

Figure 4.57: Aperture size experiment histograms for SPLIT FVs (Ap size 120◦, Az 90◦).

The dividing line illustrated on each canonical feature bar separates FVs according to class

origin with sedan FVs below the line and SUV FVs above the line. The value over each

dividing line indicates the fraction of only sedan FVs, and the value at the top of each

feature bar indicates the fraction of all FVs classified as the specified canonical shape.
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4.2.3 Elevation Angle Saliency Experiments for SPLIT Feature Vectors.

Elevation angle experiments for extracted SPLIT feature vectors considered the same

three elevations as HRR experiments, 30◦, 40◦, and 50◦. SPLIT elevation experiments are

conducted at 180◦ azimuth, ±45◦ aperture size, and 5.35 GHz bandwidth. The summary of

mean results for all SPLIT elevation experiments are included in Table 4.10.

Table 4.10: Mean results for elevation angle experiments 1 − 24 at 180◦ azimuth, ±45◦

aperture size, and 5.35 GHz bandwidth.

El # Train/Test
# RVs

Sedan/SUV

% RV

Sedan/SUV

MFW

Sedan/SUV

AFW

Sedan/SUV

Pe %

Sedan/SUV

30◦ 2236.08/571.91 6.33/6.45 0.28/0.29 1.78/1.54 0.94/0.84 0.24/4.26

40◦ 1513.91/380.08 10.20/9.87 0.67/0.65 13.34/12.42 4.64/4.25 0.56/12.45

50◦ 1146.25/289.75 5.08/5.12 0.44/0.44 2.31/2.17 1.45/1.37 0.08/8.68

The total size of the training and testing data sets for extracted SPLIT feature vectors

is shown in Figure 4.58. An interesting result is seen when comparing Figure 4.58 to the

corresponding HRR result in Figure 4.21. While the number of extracted HRR feature

vectors increase as elevation angle increases, presumably due to the radar being exposed to

a larger amount of target surface, the number of extracted SPLIT feature vectors decreases

with increasing elevation angle. This inverse result may be explained by considering

the findings of HRR elevation experiments and the nature of the SPLIT algorithm. As

discussed in Section 4.1.3, the most distinct and recognizable CV target features are found

below the roof line of vehicles seen best at lower elevation angles. As SPLIT conducts

its image peak search, many more of the unique features visible at lower azimuths are

chosen for SPLIT feature extraction, increasing the size of the training and testing data

sets. Alternatively, while a greater amount of vehicle target surface may be visible at higher
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elevation angles, fewer pixels are identified as SPLIT image peaks and thus many pixels

are eliminated prior to feature vector extraction.

Figure 4.58: Total extracted train and test SPLIT feature vectors for elevation angle

experiments at 180◦ azimuth.

The number of identified relevant SPLIT feature vectors and the percent of training

data considered relevant are presented in Figure 4.59 and Figure 4.60, respectively.

Figure 4.60 highlights 30◦ as the elevation that the RVM is able to compress most

effectively. Probability of classification error results are shown in Figure 4.61. While

50◦ elevation demonstrates a slightly lower sedan test classification error, 30◦ elevation

produces comparable sedan error and a very impressive average SUV test error of 4.26%.

Even more impressive, no individual test at 30◦ elevation demonstrated Pe greater than

10%. Consistent with the result for HRR elevation experiments, the recommended

elevation for SPLIT feature vector experiments is 30◦.
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Figure 4.59: Total identified relevant SPLIT feature vectors for elevation angle experiments

at 180◦ azimuth.

Histograms are created for elevation angle experiment comparisons of all extracted

SPLIT feature vectors and relevant SPLIT feature vectors as determined by the RVM

classifier. The histograms for 30◦ elevation are shown in Figure 4.62, 40◦ elevation in

Figure 4.51, and 50◦ elevation in Figure 4.63. First comparing all extracted SPLIT feature

vectors, observe that similar to the results from HRR elevation experiments, more unique

target features are classified at 30◦ elevation, such as the increase in vertical edges/wires

in Figure 4.62b when compared to Figure 4.51b and Figure 4.63b. Elevations of 40◦ and

50◦ are very similar, classifying horizontal cylinders and horizontal dihedrals above all else

at the 180◦ azimuth rear vehicle aspect. Histogram results at 30◦ elevation again stand

out when compared to 40◦ and 50◦ elevations for extracted SPLIT feature vectors. The

consistent distinction observed at lower elevation provides increased potential separability

of civilian vehicle target classes for improved SAR classification performance.
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Figure 4.60: Percent of training SPLIT feature vectors deemed relevant for elevation angle

experiments at 180◦ azimuth.

Elevation angle also played an important role in determining which canonical shapes

the RVM emphasized for classification decisions. At 30◦ elevation, horizontal dihedrals

were given increased importance while vertical edges/wires were deemphasized as shown

in Figure 4.62a. While both 40◦ and 50◦ elevations found an increase in relevance for

trihedral features in Figure 4.51a and Figure 4.63a, respectively, the RVM placed additional

significance on sphere/plate classifications at 40◦ elevation and vertical edges/wires at 50◦

elevation.
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Figure 4.61: Probability of RVM classification error for extracted SPLIT feature vectors as

seen throughout elevation angle experiments at 180◦ azimuth.
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(a) Identified Relevant SPLIT Feature Vectors Only

(b) All Extracted SPLIT Feature Vectors

Figure 4.62: Elevation angle experiment histograms for SPLIT FVs (El 30◦, Az 180◦).

The dividing line illustrated on each canonical feature bar separates FVs according to class

origin with sedan FVs below the line and SUV FVs above the line. The value over each

dividing line indicates the fraction of only sedan FVs, and the value at the top of each

feature bar indicates the fraction of all FVs classified as the specified canonical shape.
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(a) Identified Relevant SPLIT Feature Vectors Only

(b) All Extracted SPLIT Feature Vectors

Figure 4.63: Elevation angle experiment histograms for SPLIT FVs (El 50◦, Az 180◦).

The dividing line illustrated on each canonical feature bar separates FVs according to class

origin with sedan FVs below the line and SUV FVs above the line. The value over each

dividing line indicates the fraction of only sedan FVs, and the value at the top of each

feature bar indicates the fraction of all FVs classified as the specified canonical shape.
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4.2.4 Bandwidth Saliency Experiments for SPLIT Feature Vectors.

The final set of extracted SPLIT feature vector experiments focused on the effects of

bandwidth saliency. The same three bandwidths used for extracted HRR feature vector

experiments are again utilized for extracted SPLIT feature vectors. Bandwidths include

the maximum available CV domes bandwidth of 5.35 GHz, 3 GHz, and the operational

AFRL Gotcha bandwidth of 640 MHz [29]. SPLIT bandwidth experiments are conducted

at 135◦ azimuth, 40◦ elevation, and ±45◦ aperture size. Mean results for all 24 individual

experiments are shown in Table 4.11.

Table 4.11: Mean results for bandwidth experiments 1− 24 at 135◦ azimuth, 40◦ elevation,

and ±45◦ aperture size.

El # Train/Test
# RVs

Sedan/SUV

% RV

Sedan/SUV

MFW

Sedan/SUV

AFW

Sedan/SUV

Pe %

Sedan/SUV

640MHz 416.8/102.1 6.4/6.5 1.55/1.58 17.23/15.49 7.18/6.52 1.37/21.86

3.0GHz 1328.8/163.1 8.6/8.6 0.64/0.64 12.28/11.84 4.19/4.01 1.20/8.03

5.35GHz 1553.1/389.9 10.0/9.6 0.64/0.62 15.90/14.69 5.52/5.02 0.58/7.46

Training and testing feature vector sets for each bandwidth are illustrated in

Figure 4.64. Unsurprisingly, the amount of extracted SPLIT feature vector data increases

along with bandwidth. The number of identified RVs for each experiment also increases

with bandwidth as shown in Figure 4.65. When comparing the ratio of relevant vectors to

training data, however, shown in Figure 4.66, notice that the RVM represents training data

classes at 3 GHz bandwidth with nearly the same RV ratio as at 5.35 GHz bandwidth. Due

to the reduced computational complexity, this result creates an area of interest in regards to

bandwidth saliency at 3 GHz prior to analysis of Pe results.

119



Figure 4.64: Total extracted train and test SPLIT feature vectors for bandwidth experiments

at 135◦ azimuth.

Probability of test classification error for SPLIT feature vectors is shown in

Figure 4.67. Classification errors are significantly reduced as bandwidth increases from

640 MHz to 3 GHz, especially for SUV test vehicles, but only slightly reduced from

3 GHz to 5.35 GHz. In regards to bandwidth saliency, 3 GHz is the best choice for

accurate test classification performance for SPLIT feature vector experiments. It is clear

that additional bandwidth beyond 640 MHz provides worthwhile improvement to test

classification results, but it is not clear how much bandwidth may be reduced below 3

GHz to remain salient. Additional testing between 640 MHz and 3 GHz may reveal a more

refined desired bandwidth with improved computational performance.

SPLIT feature vector histograms for varying bandwidths are presented in Figure 4.68

for 640 MHz, Figure 4.69 for 3 GHz, and Figure 4.50 for 5.35 GHz. For all extracted

SPLIT feature vectors across bandwidths, an increase in vertical edge/wire canonical shape
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Figure 4.65: Total identified relevant SPLIT feature vectors for bandwidth experiments at

135◦ azimuth.

classifications is observed due to the non-specular canted azimuth of 135◦ chosen for the

SPLIT bandwidth saliency experiments. As bandwidth is reduced from 5.35 GHz to 640

MHz, feature vector misclassifications may be observed due to the degradation in resolution

of the collected SAR CV targets. At 640 MHz in Figure 4.68a, the RVM places the

most relevance on vertical edges/wires and almost no classification relevance on horizontal

dihedrals, a result that may be misleading toward the goal of improving SAR classification

results due to the limited amount of target collection bandwidth. Much more consistent

RVM feature classification results may be observed between canonical shape histograms

for the two higher bandwidths, shown in Figure 4.69a and Figure 4.50a.
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Figure 4.66: Percent of training SPLIT feature vectors deemed relevant for bandwidth

experiments at 135◦ azimuth.

Figure 4.67: Probability of RVM classification error for extracted SPLIT feature vectors as

seen throughout bandwidth experiments at 135◦ azimuth.
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(a) Identified Relevant SPLIT Feature Vectors Only

(b) All Extracted SPLIT Feature Vectors

Figure 4.68: Bandwidth experiment histograms for SPLIT FVs (BW 640 MHz, Az 135◦)).

The dividing line illustrated on each canonical feature bar separates FVs according to class

origin with sedan FVs below the line and SUV FVs above the line. The value over each

dividing line indicates the fraction of only sedan FVs, and the value at the top of each

feature bar indicates the fraction of all FVs classified as the specified canonical shape.

123



(a) Identified Relevant SPLIT Feature Vectors Only

(b) All Extracted SPLIT Feature Vectors

Figure 4.69: Bandwidth experiment histograms for SPLIT FVs (BW 3 GHz, Az 135◦).

The dividing line illustrated on each canonical feature bar separates FVs according to class

origin with sedan FVs below the line and SUV FVs above the line. The value over each

dividing line indicates the fraction of only sedan FVs, and the value at the top of each

feature bar indicates the fraction of all FVs classified as the specified canonical shape.
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4.3 Salient Feature Representation

A potential application of salient feature vector representation may involve examina-

tion of feature vector locations in physical target space. Combining the location of identi-

fied relevant feature vectors with the classified canonical scatterer type may assist in high-

lighting the most significant portions of a SAR target contributing to effective ATR. Two

examples of this application are provided below. The first example, shown in Figure 4.70,

examines extracted HRR feature vectors for sedan class SAR targets at 90◦ azimuth, 40◦

elevation, ±2.5◦ aperture size, and 5.35 GHz bandwidth. All extracted sedan class HRR

feature vectors are illustrated in Figure 4.70b, and only the identified relevant HRR feature

vectors are highlighted in Figure 4.70a. Observe in both figures that horizontal cylinder

features are primarily located at closer ranges, while horizontal dihedral features are appro-

priately located at more distant ranges due to the increased travel distance of transmitted

pulses. In regards to identified relevant HRR feature vectors, no significant groupings or

canonical shape patterns are observed in Figure 4.70a. Therefore, improving SAR binary

classification using salient features relies primarily on the RVM’s relative dependence of

canonical target features as illustrated in the histograms from Section 4.1 and Section 4.2.

A second example of salient feature representation is shown in Figure 4.71 for

extracted sedan class 2D image SPLIT feature vectors at 90◦ azimuth, 40◦ elevation,

±45◦ aperture size, and 5.35 GHz bandwidth. All extracted SPLIT feature vectors are

illustrated in Figure 4.71b with only relevant SPLIT feature vectors in Figure 4.71a. In

Figure 4.71b, the general roof line of the combined sedan class vehicles is evident and

classified accurately as horizontal cylinder features. Additionally, the side of the sedan

vehicles may be identified correctly as horizontal dihedral features. In regards to the RVM

identified SPLIT feature vectors illustrated in Figure 4.71a, results are similar to relevant

HRR feature vector locations in that no obvious canonical shape patterns or relevant feature

vector groupings are evident.
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(a) Identified Relevant HRR Feature Vectors Only

(b) All Extracted HRR Feature Vectors

Figure 4.70: HRR feature vector location representations (azimuth 90◦, elevation 40◦,

aperture size ±2.5◦, bandwidth 5.35 GHz)

The locations of identified relevant feature vectors as illustrated in Figure 4.70a and

Figure 4.71a assist in improving SAR binary classification performance by translating the
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(a) Identified Relevant SPLIT Feature Vectors Only

(b) All Extracted SPLIT Feature Vectors

Figure 4.71: SPLIT feature vector location representations (azimuth 90◦, elevation 40◦,

aperture size ±45◦, bandwidth 5.35 GHz)

relevant features to physical target space. Future work, described further in Section 6.2,

should in part consider new methods of classification and salient feature representation to
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research location patterns and relevant feature vector groupings to narrow the target aspect

focus for improving SAR ATR.
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V. Recommendations

The recommendations summarized below are specific only to the experiments

conducted, to include SAR data sets used and SAR collection parameter values selected.

Therefore, the final recommendations should not be directly applied to any other target

class data. One of the primary objectives of our saliency research was to demonstrate

a process for determining the appropriate SAR collection parameters and target features

contributing most to improving SAR ATR classification decisions. The process is described

as characterizing, or investigating, the notion of salient features. A summary of the specific

recommendations for both HRR and SPLIT feature vector experiments is presented below,

along with recommendations of the most effective extracted feature vector for improving

civilian vehicle SAR binary classification performance.

In the exploration of salience, many SAR collection parameter values were adjusted

to observe any effects on the feature extraction, feature vector creation, and RVM feature

classification processes. Only a select few values were chosen for each test parameter,

limiting the specificity of the recommendations shown in Table 5.1. The primary reason

for limiting SAR collection parameter values throughout testing is to remind the reader

that this thesis is to serve as a guide for investigating and determining saliency in future

operational scenarios. Demonstrating the process for defining salient feature sets here

should provide a road map to fully characterizing salience in future work. The summary

of recommendations is shown in Table 5.1, and a brief discussion of each SAR collection

parameter and extracted feature vector is included in Section 5.1 through Section 5.5.

5.1 Azimuth Angle Recommendation

Recommendations for both types of extracted feature vectors agreed in terms of a

desired collection parameter recommendation for azimuth angle experiments. While both
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Table 5.1: Summary of Parameter Recommendations

Parameter HRR Feature Vectors SPLIT Feature Vectors

Azimuth Angle 112.5◦ 90◦ − 135◦

Aperture Size 5◦ 60◦

Elevation Angle 30◦ 30◦

Bandwidth 640MHz − 3GHz 640MHz − 3GHz

sets of extracted feature vector experiments highlighted the side and rear aspects of the

vehicles, specifically from 90◦ to 135◦ as the most significant aspects to effective vehicle

classification, the additional azimuths tested within the HRR experiments narrowed the

recommendation to 112.5◦. Additional SPLIT testing may determine whether 112.5◦ is

the most effective azimuth for SPLIT feature vectors as well, but the additional testing is

not necessary for the objectives of our saliency research. Demonstrating the process of

characterizing saliency so that it may be applied to other SAR phase history data sets has

been met with confidence for the azimuth experimentation parameter due to the consistency

of results for both types of extracted feature vectors. A general recommendation for this

particular example will hopefully lead to the process being utilized for determination of a

precise recommendation for use in an operational scenario.

5.2 Aperture Size Recommendation

Following analysis of aperture size experimental results, it appears that aperture

size does not have a significant effect on SAR classification performance. In both types

of feature vector experiments, all three aperture sizes demonstrated similar Pe results.

Considering other factors as well resulted in the smallest aperture size of 60◦(±30◦)

being recommended for extracted SPLIT feature vector classification. Although HRR

feature vector test results were consistent with SPLIT, the large increase in extracted

HRR feature vectors over narrow apertures led to a 5◦ aperture size recommendation.
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Because the selective nature of the SPLIT algorithm eliminates many pixels prior to feature

extraction, there are significantly less extracted SPLIT feature vectors than extracted HRR

feature vectors over the same aperture. Therefore, a direct comparison between the two

recommendations is not valid, but instead each recommendation should be considered

individually depending on the type of feature vector being extracted for application of the

salient feature identification process in future work.

5.3 Elevation Angle Recommendation

Elevation angle saliency experiments produced a clear and consistent recommendation

for both extracted feature vector types. Applying the salient feature identification

process to the AFRL CV data domes [15] demonstrated that improved RVM classification

performance may be achieved at the lowest elevation angle of 30◦. For effective separation

of sedan and SUV class vehicles, the most uniquely identifying physical target features are

found on the bodies of the vehicles below the roof line, a surface area seen best with SAR

data collection at lower elevation.

5.4 Bandwidth Recommendation

Bandwidth saliency recommendations were somewhat consistent for both extracted

feature vector types. HRR feature vector Pe results demonstrated similar classification

error values across all three bandwidths. After observing salient canonical shape

histograms, however, it became more clear that reducing bandwidth causes target feature

misclassifications due to degraded resolution. The investigation ultimately led to a

recommendation of greater than 640 MHz, or as much bandwidth as available resources

will allow between 640 MHz and 3 GHz. SPLIT feature vectors told a somewhat different

story. Pe results were consistent between 3 GHz and 5.35 GHz but significantly degraded

at 640 MHz. Considering all other bandwidth experiment results, it became clear that

additional bandwidth beyond 640 MHz provides worthwhile improvement to classification
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performance, but it is not clear how much bandwidth may be reduced below 3 GHz to

remain salient. Additional SPLIT feature vector testing between 640 MHz and 3 GHz may

reveal a more refined desired bandwidth with improved computational performance.

5.5 Feature Vector Recommendation

Each type of extracted feature vector utilized throughout the saliency investigation

provided its own benefits to improving classification performance. HRR feature vectors

provided a more thorough view of the SAR targets, using all collected phase history data to

fully investigate a specific region of the targets. In addition, the larger, often cumbersome,

HRR feature vector sets are preferred by the RVM classifier as they allow more training

data to be considered for effective class separation and creation of the hyperplane decision

boundary. Extracted SPLIT feature vectors provide benefits as well. While SPLIT extracts

less feature vectors than the HRR method over the same SAR collection parameters, the

feature vectors which are extracted are more accurate representations of canonical target

features due to thresholding parameters implemented throughout the extraction process.

The selective nature of SPLIT feature extraction leads to reduced Pe results throughout

RVM tests. Also, the reduction in extracted SPLIT feature vectors allows larger apertures

to be collected for RVM classification, providing class comparison of many different target

aspects with reduced computational complexity.

In short, the recommended type of extracted feature vector for improving SAR

classification performance depends on the goals and resources available for the specific

task at hand. For saliency characterization of SAR targets with large aperture phase

history data available, extracting SPLIT feature vectors may be the best choice for both

improved classification performance and reduced resource requirements. If real-world

threat restrictions limit the amount of SAR target aspect coverage available for collection,

the more comprehensive method of extracting HRR feature vectors may be the appropriate

choice.
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VI. Conclusions and Future Work

6.1 Conclusions

The overarching objective of our research was to investigate the notion of saliency for

improving SAR binary classification performance for application to, and improvement of,

SAR ATR. With that objective in mind, several goals were proposed in Section 1.3 to guide

the saliency exploration. To satisfy goal #1, a methodology was developed in Section 3.1

for characterizing feature salience by extracting potentially identifying features from SAR

phase history data to form feature vectors for kernel-based classification. The Bayesian-

based RVM classifier [13] was selected to compare the two classes of extracted feature

vectors for identification of the most relevant feature vectors contributing to classification

decisions. Goal #2 was achieved by first designing a robust set of experiments in

Section 3.2 to compare the sedan and SUV class vehicles of AFRL’s CV data domes [15].

Then, in Chapter 4, experiments were executed to characterize saliency by uncovering the

most impactful feature vectors and SAR collection parameters for improving classification

performance between sedan and SUV class civilian vehicles. Finally, initial goals #3

and #4 were met through the recommendations summarized in Chapter 5 based on the

experimental results and analysis detailed in Chapter 4.

6.2 Future Work

The salient feature identification and analysis research provides a foundation for future

work in saliency characterization for improving SAR binary classification performance.

Several potential research topics are presented based on the initial exploratory results

observed in the first attempt at fully investigating class saliency of the AFRL CV data

domes SAR phase history data set [15].

133



• Extend saliency research to other SAR phase history data sets to compare the

classification performance for various target classes. Additionally, demonstrate the

saliency identification algorithm on real-world SAR data collections such as AFRL’s

Gotcha data set [29] to investigate the challenges introduced by resource limitations

and noisy target collection environments.

• Explore the effects of various training data sets on RVM classification accuracy. For

example, removing the Tacoma from the SUV class in our research would have

improved results across SUV tests. Developing the optimal RVM class training

process will lead to more accurate classification results in regards to identifying

salient features.

• Extract additional features for creation of new feature vectors beyond the HRR and

SPLIT feature vectors implemented in our research. Determine the most effective

extracted feature vector set for improving SAR binary classification performance.

• Conduct saliency experiments using a variety of classification techniques beyond the

kernel-based RVM to resolve the most operative ATR classification algorithm.

• Extend the current canonical shape classification of relevant feature vectors by

developing new methods of salient feature representation in physical target space.

• Refine the nature of saliency for improving SAR binary classification performance

by introducing new methods to contribute to the current SAR ATR framework.
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